Oxygen, Hydrogen Donors and Radiation Response

Author(s):  
John E. Biaglow
2021 ◽  
Vol 1827 (1) ◽  
pp. 012107
Author(s):  
Yawen Zuo ◽  
Mingguang Zhang ◽  
Feng Zheng ◽  
Wenjie Pan ◽  
Sifan Mo

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Joshua E. Lewis ◽  
Melissa L. Kemp

AbstractResistance to ionizing radiation, a first-line therapy for many cancers, is a major clinical challenge. Personalized prediction of tumor radiosensitivity is not currently implemented clinically due to insufficient accuracy of existing machine learning classifiers. Despite the acknowledged role of tumor metabolism in radiation response, metabolomics data is rarely collected in large multi-omics initiatives such as The Cancer Genome Atlas (TCGA) and consequently omitted from algorithm development. In this study, we circumvent the paucity of personalized metabolomics information by characterizing 915 TCGA patient tumors with genome-scale metabolic Flux Balance Analysis models generated from transcriptomic and genomic datasets. Metabolic biomarkers differentiating radiation-sensitive and -resistant tumors are predicted and experimentally validated, enabling integration of metabolic features with other multi-omics datasets into ensemble-based machine learning classifiers for radiation response. These multi-omics classifiers show improved classification accuracy, identify clinical patient subgroups, and demonstrate the utility of personalized blood-based metabolic biomarkers for radiation sensitivity. The integration of machine learning with genome-scale metabolic modeling represents a significant methodological advancement for identifying prognostic metabolite biomarkers and predicting radiosensitivity for individual patients.


Author(s):  
Naoki Kawano ◽  
Atsushi Horimoto ◽  
Hiromi Kimura ◽  
Daisuke Nakauchi ◽  
Masaki Akatsuka ◽  
...  

2021 ◽  
Vol 549 ◽  
pp. 152804
Author(s):  
Caleb P. Massey ◽  
Dalong Zhang ◽  
Samuel A. Briggs ◽  
Philip D. Edmondson ◽  
Yukinori Yamamoto ◽  
...  

2020 ◽  
Vol 7 (1) ◽  
pp. 29-36
Author(s):  
Antonina A. Stepacheva ◽  
Mariia E. Markova ◽  
Yury V. Lugovoy ◽  
Kirill V. Chalov ◽  
Mikhail G. Sulman ◽  
...  

AbstractHydrotreatment of bio-oil oxygen compounds allows the final product to be effectively used as a liquid transportation fuel from biomass. Deoxygenation is considered to be one of the most promising ways for bio-oil upgrading. In the current work, we describe a novel approach for the deoxygenation of bio-oil model compounds (anisole, guaiacol) using supercritical fluids as both the solvent and hydrogen-donors. We estimated the possibility of the use of complex solvent consisting of non-polar n-hexane with low critical points (Tc = 234.5 ºC, Pc = 3.02 MPa) and propanol-2 used as H-donor. The experiments were performed without catalysts and in the presence of noble and transition metals hydrothermally deposited on the polymeric matrix of hypercrosslinked polystyrene (HPS). The experiments showed that the presence of 20 vol. % of propanol-2 in n-hexane results in the highest (up to 99%) conversion of model compounds. When the process was carried out without a catalyst, phenols were found to be a major product yielding up to 95 %. The use of Pd- and Co-containing catalyst yielded 90 % of aromatic compounds (benzene and toluene) while in the presence of Ru and Ni cyclohexane and methylcyclohexane (up to 98 %) were the main products.


Sign in / Sign up

Export Citation Format

Share Document