Traumatic Brain Injury: Sports Concussion

Author(s):  
David B. Coppel ◽  
Stanley A. Herring
2021 ◽  
Author(s):  
Scott R. Laker ◽  
Jessica Pruente ◽  
Derek Stokes

2013 ◽  
Vol 93 (9) ◽  
pp. 1254-1267 ◽  
Author(s):  
Matthew R. Scherer ◽  
Margaret M. Weightman ◽  
Mary V. Radomski ◽  
Leslie F. Davidson ◽  
Karen L. McCulloch

Within the last decade, more than 220,000 service members have sustained traumatic brain injury (TBI) in support of military operations in Iraq and Afghanistan. Mild TBI may result in subtle cognitive and sensorimotor deficits that adversely affect warfighter performance, creating significant challenges for service members, commanders, and clinicians. In recent conflicts, physical therapists and occupational therapists have played an important role in evaluating service member readiness to return to duty (RTD), incorporating research and best practices from the sports concussion literature. Because premorbid (baseline) performance metrics are not typically available for deployed service members as for athletes, clinicians commonly determine duty readiness based upon the absence of postconcussive symptoms and return to “normal” performance on clinical assessments not yet validated in the military population. Although practices described in the sports concussion literature guide “return-to-play” determinations, resolution of symptoms or improvement of isolated impairments may be inadequate to predict readiness in a military operational environment. Existing clinical metrics informing RTD decision making are limited because they fail to emphasize functional, warrior task demands and they lack versatility to assess the effects of comorbid deficits. Recently, a number of complex task-oriented RTD approaches have emerged from Department of Defense laboratory and clinical settings to address this gap. Immersive virtual reality environments, field-based scenario-driven assessment programs, and militarized dual-task and multitask-based approaches have all been proposed for the evaluation of sensorimotor and cognitive function following TBI. There remains a need for clinically feasible assessment methods that can be used to verify functional performance and operational competence in a variety of practice settings. Complex and ecologically valid assessment techniques incorporating dual-task and multitask methods may prove useful in validating return-to-activity requirements in civilian and military populations.


2018 ◽  
Vol 2 ◽  
pp. 205970021880812 ◽  
Author(s):  
M Sargeant ◽  
E Sykes ◽  
M Saviour ◽  
A Sawhney ◽  
E Calzolari ◽  
...  

The Sports Concussion Assessment Tool 3rd version is a sports screening tool that is often used to support return to play decisions following a head injury. The Sports Concussion Assessment Tool 3rd version is presumed to identify brain dysfunction (implying a degree of brain injury); however, the Sports Concussion Assessment Tool has never been validated with patients with definite acute brain injury. In this study, we found that all three Sports Concussion Assessment Tool 3rd version domains – symptoms, cognitive and balance assessments – were sensitive in discriminating traumatic brain injury patients (all with abnormal acute neuroimaging) from healthy controls. Through a correlation matrix (Bonferroni corrected), we found no correlation between the subjective (symptoms) and objective (examination) Sports Concussion Assessment Tool 3rd version assessments, e.g. complaints of imbalance and memory dysfunction were not correlated, respectively, with performance on testing balance and memory function. When relaxing the correction for multiple comparisons we found that of all Sports Concussion Assessment Tool 3rd version symptoms, a feeling of ‘pressure in the head’ had the largest number of co-correlations (including affective symptoms) and overwhelmingly in a pattern indicative of migraine. Taken together, that objective and subjective assessments in the Sports Concussion Assessment Tool 3rd version are poorly correlated, could suggest that symptoms in the Sports Concussion Assessment Tool 3rd version poorly reflect brain injury but rather indicate non-brain injury processes such as migraine. It follows that the current prominent orthodoxy of resting athletes following a head injury until their symptoms settle for fear of exacerbating brain injury may be unfavourable for their recovery – at least in some cases. Prospective clinical studies would be required to assess patient recovery from concussion with early active investigation and treatment versus rest – a notion supported by recent international consensus.


2012 ◽  
Vol 33 (6) ◽  
pp. E7 ◽  
Author(s):  
Nadia Gosselin ◽  
Carolina Bottari ◽  
Jen-Kai Chen ◽  
Sonja Christina Huntgeburth ◽  
Louis De Beaumont ◽  
...  

Object Mild traumatic brain injury (MTBI), often referred to as concussion when it occurs in sports, produces persistent cognitive problems in at least 15% of patients. Unfortunately, conventional neuropsychological tests usually yield results within normal limits in this population. The main objective of this event-related potential (ERP) study was to understand brain functioning during the performance of a working memory (WM) task in patients who have sustained an MTBI, mostly due to motor vehicle accident or sports concussion. This study also aimed for a better understanding of the association between brain functioning as measured with ERP, behavioral performance on the WM task, postconcussion symptoms, type of injury (that is, sports concussion vs other types), and time since the injury. Methods Forty-four patients with MTBI (7.6 ± 8.4 months postinjury) were tested on a visual WM task with simultaneous recording of ERP, and were compared with 40 control volunteers who were their equivalent for age and sex. Amplitude and latency of frontal (N200 and N350) and parietal (P200 and P300) ERP waves were measured and were compared between groups. Correlation analyses were also performed between ERP characteristics, clinical variables, and behavioral performance. Results A significant group difference was found for behavioral performance on the WM task, in which the MTBI group had a lower percentage of correct answers than the control group (p < 0.05). The patients with MTBI also had smaller amplitudes of both frontal N350 and parietal P300 ERP components when compared with control volunteers (p < 0.05). No changes were found for latency of ERP components. Smaller ERP amplitudes were associated with slower reaction times and worse accuracy on the WM task among patients with MTBI (p < 0.05). Types of injury (that is, sports concussion vs other mechanisms) were not associated with different ERP characteristics. Conclusions Abnormal ERP results are observed in patients after MTBI or sports concussion, even for those in the nonacute stage after their injury. Current standard clinical evaluations most often fail to detect cerebral dysfunction after MTBI, even when patients or athletes report symptoms. Clinicians should be aware that patients with MTBI, including sports concussion, probably have underlying mild but persistent cerebral dysfunctions that require further investigation.


2019 ◽  
Vol 42 ◽  
Author(s):  
Colleen M. Kelley ◽  
Larry L. Jacoby

Abstract Cognitive control constrains retrieval processing and so restricts what comes to mind as input to the attribution system. We review evidence that older adults, patients with Alzheimer's disease, and people with traumatic brain injury exert less cognitive control during retrieval, and so are susceptible to memory misattributions in the form of dramatic levels of false remembering.


Sign in / Sign up

Export Citation Format

Share Document