Adjustment of Codon Usage Frequencies by Codon Harmonization Improves Protein Expression and Folding

Author(s):  
Evelina Angov ◽  
Patricia M. Legler ◽  
Ryan M. Mease
2020 ◽  
Vol 94 (21) ◽  
Author(s):  
Ana Jordan-Paiz ◽  
Maria Nevot ◽  
Kevin Lamkiewicz ◽  
Marie Lataretu ◽  
Sandra Franco ◽  
...  

ABSTRACT Synonymous genome recoding has been widely used to study different aspects of virus biology. Codon usage affects the temporal regulation of viral gene expression. In this study, we performed synonymous codon mutagenesis to investigate whether codon usage affected HIV-1 Env protein expression and virus viability. We replaced the codons AGG, GAG, CCU, ACU, CUC, and GGG of the HIV-1 env gene with the synonymous codons CGU, GAA, CCG, ACG, UUA, and GGA, respectively. We found that recoding the Env protein gp120 coding region (excluding the Rev response element [RRE]) did not significantly affect virus replication capacity, even though we introduced 15 new CpG dinucleotides. In contrast, changing a single codon (AGG to CGU) located in the gp41 coding region (HXB2 env position 2125 to 2127), which was included in the intronic splicing silencer (ISS), completely abolished virus replication and Env expression. Computational analyses of this mutant revealed a severe disruption in the ISS RNA secondary structure. A variant that restored ISS secondary RNA structure also reestablished Env production and virus viability. Interestingly, this codon variant prevented both virus replication and Env translation in a eukaryotic expression system. These findings suggested that disrupting mRNA splicing was not the only means of inhibiting translation. Our findings indicated that synonymous gp120 recoding was not always deleterious to HIV-1 replication. Importantly¸ we found that disrupting an external ISS loop strongly affected HIV-1 replication and Env translation. IMPORTANCE Synonymous substitutions can influence virus phenotype, replication capacity, and virulence. In this study, we explored how synonymous codon mutations impacted HIV-1 Env protein expression and virus replication capacity. We changed a single codon, AGG to CGU, which was located in the gp41 coding region (env nucleotide residues 2125 to 2127) and was included in the HIV-1 intronic splicing silencer. This change completely abolished virus replication and Env expression. We also found that changing codon usage in the gp120 region by including an increased number of CpG dinucleotides did not significantly affect Env expression or virus viability. Our findings showed that synonymous recoding was useful for altering viral phenotype and exploring virus biology.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Zhipeng Zhou ◽  
Yunkun Dang ◽  
Mian Zhou ◽  
Haiyan Yuan ◽  
Yi Liu

Codon usage biases are found in all genomes and influence protein expression levels. The codon usage effect on protein expression was thought to be mainly due to its impact on translation. Here, we show that transcription termination is an important driving force for codon usage bias in eukaryotes. Using Neurospora crassa as a model organism, we demonstrated that introduction of rare codons results in premature transcription termination (PTT) within open reading frames and abolishment of full-length mRNA. PTT is a wide-spread phenomenon in Neurospora, and there is a strong negative correlation between codon usage bias and PTT events. Rare codons lead to the formation of putative poly(A) signals and PTT. A similar role for codon usage bias was also observed in mouse cells. Together, these results suggest that codon usage biases co-evolve with the transcription termination machinery to suppress premature termination of transcription and thus allow for optimal gene expression.


2017 ◽  
Vol 8 ◽  
Author(s):  
Manuel Hiss ◽  
Lucas Schneider ◽  
Christopher Grosche ◽  
Melanie A. Barth ◽  
Christina Neu ◽  
...  

Author(s):  
Darja Kanduc

AbstractInfectious diseases pose two main compelling issues. First, the identification of the molecular factors that allow chronic infections, that is, the often completely asymptomatic coexistence of infectious agents with the human host. Second, the definition of the mechanisms that allow the switch from pathogen dormancy to pathologic (re)activation. Furthering previous studies, the present work (1) analyzes the frequency of occurrence of synonymous codons in coding DNA, that is, codon usage, as a genetic tool that rules protein expression; (2) describes how human codon usage can inhibit protein expression of infectious agents during latency, so that pathogen genes the codon usage of which does not conform to the human codon usage cannot be translated; and (3) frames human codon usage among the front-line instruments of the innate immunity against infections. In parallel, it is shown that, while genetics can account for the molecular basis of pathogen latency, the changes of the quantitative relationship between codon frequencies and isoaccepting tRNAs during cell proliferation offer a biochemical mechanism that explains the pathogen switching to (re)activation. Immunologically, this study warns that using codon optimization methodologies can (re)activate, potentiate, and immortalize otherwise quiescent, asymptomatic pathogens, thus leading to uncontrollable pandemics.


10.29007/d4tz ◽  
2019 ◽  
Author(s):  
Gabriel Wright ◽  
Anabel Rodriguez ◽  
Patricia Clark ◽  
Scott Emrich

%MinMax, a model of intra-gene translational elongation rate, relies on codon usage frequencies. Historically, %MinMax has used tables that measure codon usage bias for all genes in an organism, such as those found at HIVE-CUT. In this paper, we provide evidence that codon usage bias based on all genes is insufficient to accurately measure absolute translation rate. We show that alternative ”High-φ” codon usage tables, generated by another model (ROC-SEMPPR), are a promising alternative. By creating a hybrid model, future codon usage analyses and their applications (e.g., codon harmonization) are likely to more accurately measure the ”tempo” of translation elongation. We also suggest a High- φ alternative to the Codon Adaptation Index (CAI), a classic metric of codon usage bias based on highly expressed genes. Significantly, our new alternative is equally well correlated with empirical data as traditional CAI without using experimentally determined expression counts as input.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1185-1185
Author(s):  
Sandra C. Tseng ◽  
Nobuko H. Katagiri ◽  
Vijaya L. Simhadri ◽  
Sujata Jha ◽  
Nathan C. Edwards ◽  
...  

Abstract Abstract 1185 Introduction: Synonymous mutations, previously called ‘silent’ mutations, are now widely acknowledged to be associated with various disease states by causing changes in protein expression, conformation, and function. A number of synonymous mutations in factor IX (Val107Val, Arg116Arg, and Gln191Gln) were discovered in patients presenting with mild hemophilia B. Further, the use of viral vectors harboring codon-optimized F9 for the treatment of hemophilia B is currently being evaluated. The synonymous mutations which are used in codon-optimized vectors are largely considered harmless and are therefore generously employed to boost expression levels of factor IX (FIX). Previously, we have shown that introducing synonymous mutations may cause changes in other characteristics apart from protein expression, such as in protein function and conformation. Methods: To evaluate the properties of FIX protein which contain synonymous mutations, we produced and characterized a panel of F9 variants harboring a single and or a combination of synonymous mutations, and compared them wild-type F9 (NCBI RefSeq NM_000133.3). One codon-optimized construct differed from wild-type F9 in over 50% of nucleotides. For each point mutation, we calculated relative synonymous codon usage, determined local mRNA structure and stability, and analyzed protein structure computationally. Concurrently, we transiently and or stably transfected HEK293 and liver HUH7 cells with each vector. We examined mRNA (using RT-PCR and sequencing) and protein expression levels (using ELISA and western blotting techniques), as well as activity using aPTT and chromogenic assays. Further, we examined the conformation of the expressed protein by examining differential binding patterns of conformation-specific monoclonal antibodies and analysis by trypsin digestion and native PAGE. Results: The disease-associated synonymous mutations (Val107Val, Arg116Arg, and Gln191Gln) resulted in altered FIX expression and activity with evidence of stability and conformational differences compared to wild-type FIX. Preliminary experiments reveal that the propeptide of the Val107Val mutant is less efficiently cleaved than the wild-type. Further, we were able to demonstrate, with a cell-free translation system, that Val107Val FIX is translated at a significantly decreased rate in vitro compared to wild-type FIX (30–40% less efficiently), offering a mechanistic explanation for the altered protein properties observed in disease-associated constructs. The reduced translation rate associated with the Val107Val synonymous mutation is accompanied by a reduced codon usage. In contrast, other constructs, including the codon-optimized F9, had markedly increased expression level with negligible difference in specific activity. Conclusions: Single synonymous mutations (e.g. Val107Val, Arg116Arg, and Gln191Gln) in F9 may precipitate hemophilia B because they result in markedly altered protein properties (expression, activity, and conformation). Codon-optimized vectors, which consist of a number of synonymous mutations, result in the quantitative gain in expression of FIX. However, other properties, particularly those of pharmacokinetic significance, need to be evaluated to ensure that introduced synonymous mutations have positive rather than negative effect on the resultant protein. Results from computational analysis of characteristics such as mRNA stability, codon usage, and secondary structures of FIX aligned with in vitro analyses. This work leads to a better understanding of ways in which synonymous mutations precipitate disease. The findings and conclusions in this article have not been formally disseminated by the Food and Drug Administration and should not be construed to represent any Agency determination policy. Disclosures: No relevant conflicts of interest to declare.


Microbiology ◽  
2009 ◽  
Vol 155 (11) ◽  
pp. 3581-3588 ◽  
Author(s):  
Song F. Lee ◽  
Yi-Jing Li ◽  
Scott A. Halperin

One of the limitations facing the development of Streptococcus gordonii into a successful vaccine vector is the inability of this bacterium to express high levels of heterologous proteins. In the present study, we have identified 12 codons deemed as rare codons in S. gordonii and seven other streptococcal species. tRNA genes encoding 10 of the 12 rare codons were cloned into a plasmid. The plasmid was transformed into strains of S. gordonii expressing the fusion protein SpaP/S1, the anti-complement receptor 1 (CR1) single-chain variable fragment (scFv) antibody, or the Toxoplasma gondii cyclophilin C18 protein. These three heterologous proteins contained high percentages of amino acids encoded by rare codons. The results showed that the production of SpaP/S1, anti-CR1 scFv and C18 increased by 2.7-, 120- and 10-fold, respectively, over the control strains. In contrast, the production of the streptococcal SpaP protein without the pertussis toxin S1 fragment was not affected by tRNA gene supplementation, indicating that the increased production of SpaP/S1 protein was due to the ability to overcome the limitation caused by rare codons required for the S1 fragment. The increase in anti-CR1 scFv production was also observed in Streptococcus mutans following tRNA gene supplementation. Collectively, the findings in the present study demonstrate for the first time, to the best of our knowledge, that codon-usage bias exists in Streptococcus spp. and the limitation of heterologous protein expression caused by codon-usage bias can be overcome by tRNA supplementation.


2005 ◽  
Vol 73 (9) ◽  
pp. 5666-5674 ◽  
Author(s):  
Hyun-Jeong Ko ◽  
Sung-Youl Ko ◽  
Yeon-Jeong Kim ◽  
Eun-Gae Lee ◽  
Sang-Nae Cho ◽  
...  

ABSTRACT In spite of its many other benefits, DNA vaccine is limited in its application by its insufficient immunogenicity. One promising approach for enhancing its immunogenicity is to maximize its expression in the immunized host. In the current study, we investigated whether codon optimization of the mycobacterial antigen Ag85B gene could enhance the expression and immunogenicity of the Ag85B DNA vaccine. We generated a synthetic humanized Ag85B (hAg85B) gene in which codon usage was optimized for expression in human cells. DNA plasmids with codon-optimized hAg85B increased the level of protein expression in vitro and in vivo. DNA vaccine with hAg85B induced stronger Th1-like and cytotoxic T-cell immune responses in BALB/c mice and generated higher protective immunity in a BALB/c mouse model of Mycobacterium tuberculosis aerosol infection than did the DNA vaccine with wild-type Ag85B. Therefore, our results suggest that codon optimization of mycobacterial antigens (e.g., Ag85B) could improve protein expression and thereby enhance the immunogenicity of DNA vaccines against M. tuberculosis.


Sign in / Sign up

Export Citation Format

Share Document