Fast Estimation Method of Workpiece Shape in NC Machining Process for Prediction of Instantaneous Cutting Force

2010 ◽  
pp. 373-378 ◽  
Author(s):  
Jun’ichi Kaneko ◽  
Koji Teramoto ◽  
Kenichiro Horio ◽  
Yoshimi Takeuchi
2014 ◽  
Vol 8 (3) ◽  
pp. 420-427 ◽  
Author(s):  
Jun’ichi Kaneko ◽  
◽  
Yuki Yamauchi ◽  
Kenichiro Horio

This study proposes a new method of estimating tool posture in 3+2-axis control machining process. The proposed method focuses on two different properties of the workpiece surface, the machinable area and then minimum shank length. The distribution of these properties on the workpiece surface is determined by the tool posture, workpiece shape, and the shape of the cutting tool. In the planning process of 3+2-axis control machining, CAM and CAPP operators often determine the combination of tool posture and tooling conditions through trial and error. Considering these processes, it would be extremely useful to have a fast method of visualizing these properties on the workpiece surface to realize CAM and CAPP systems with an interactive interface. Therefore, this study proposes a fast estimation method that visualizes both the machinable area and the distribution of the minimum shank length as a color image for each tool posture candidate. In order to reduce the calculation time of the proposedmethods, a graphics device known as a Graphics Processing Unit (GPU) is introduced. In the proposed algorithm to adapt several features to GPU hardware, the offset shape of the workpiece surface is generated from depth information in rendering 3DCG. Furthermore, the unmachinable area is estimated by the inverse-offset operation and shadow mapping function in 3D-CG techniques. In the visualization phase of the required shank length on the workpiece surface, a color image is generated from the depth information. Then, the color image is projected on the workpiece shape using the texture projection technique. Because most calculation processes can be executed inside the GPU hardware, the developed prototype system can visualize both the unmachinable area and the distribution of minimum shank length within several dozen milliseconds for each tool posture candidate.


2008 ◽  
Vol 392-394 ◽  
pp. 64-68 ◽  
Author(s):  
Yu Hong Dong ◽  
H.T. Xu ◽  
H. Lin

In order to improve NC machining precision this article analyzes the effects of cutting force on NC machining precision by means of simulation, and builds up the mathematical models of CK7815 feed drive system and radial action force of cutting feed, in order to study the effects of cutting load torque and radial cutting force on work pieces processing precision. The simulation results illustrate that cutting load torque and radial cutting force have respectively effects on axial precision and radial precision of work piece. The bigger is cutting load torque, the bigger is axial error. The smaller is cutting process coefficient and the higher is converting spring stiffness of lathe and tool, the smaller is radial error. In practice NC machining precision is improved by trying to decrease the cutting load torque and cutting process coefficient and increase converting spring stiffness.


Micromachines ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 197 ◽  
Author(s):  
ZeJia Zhao ◽  
Suet To ◽  
ZhuoXuan Zhuang

The formation of serrated chips is an important feature during machining of difficult-to-cut materials, such as titanium alloy, nickel based alloy, and some steels. In this study, Ti6Al4V alloys with equiaxial and acicular martensitic microstructures were adopted to analyze the effects of material structures on the formation of serrated chips in straight line micro orthogonal machining. The martensitic alloy was obtained using highly efficient electropulsing treatment (EPT) followed by water quenching. The results showed that serrated chips could be formed on both Ti6Al4V alloys, however the chip features varied with material microstructures. The number of chip segments per unit length of the alloy with martensite was more than that of the equiaxial alloy due to poor ductility. Besides, the average cutting and thrust forces were about 8.41 and 4.53 N, respectively, for the equiaxed Ti6Al4V alloys, which were consistently lower than those with a martensitic structure. The high cutting force of martensitic alloy is because of the large yield stress required to overcome plastic deformation, and this force is also significantly affected by the orientations of the martensite. Power spectral density (PSD) analyses indicated that the characteristic frequency of cutting force variation of the equiaxed alloy ranged from 100 to 200 Hz, while it ranged from 200 to 400 Hz for workpieces with martensites, which was supposedly due to the formation of serrated chips during the machining process.


Author(s):  
Zhu Wen ◽  
Xuening Rong ◽  
Zhen Wang ◽  
Songtong Han ◽  
Ziming Xiong ◽  
...  

2021 ◽  
Vol 11 (9) ◽  
pp. 4055
Author(s):  
Mahdi S. Alajmi ◽  
Abdullah M. Almeshal

Machining process data can be utilized to predict cutting force and optimize process parameters. Cutting force is an essential parameter that has a significant impact on the metal turning process. In this study, a cutting force prediction model for turning AISI 4340 alloy steel was developed using Gaussian process regression (GPR), support vector machines (SVM), and artificial neural network (ANN) methods. The GPR simulations demonstrated a reliable prediction of surface roughness for the dry turning method with R2 = 0.9843, MAPE = 5.12%, and RMSE = 1.86%. Performance comparisons between GPR, SVM, and ANN show that GPR is an effective method that can ensure high predictive accuracy of the cutting force in the turning of AISI 4340.


Author(s):  
Ebrahim Hosseini ◽  
Shafiqur Rehman ◽  
Ashkan Alimoradi

Turn-milling is a hybrid machining process which used benefits of interrupted cutting for proceeding of round bars. However, number of controllable parameters in the hybrid process is numerous that makes optimizing the process complicated. In the present study, an optimization work has been proposed to investigate the trade-off between production rate and cutting force in roughing regime as well surface roughness and tensile residual stress in finishing regime. Number of 43 experiments based on response surface methodology was designed and carried out to gather required data for development of quadratic empirical models. Then, the adequacy and importance of process factors were analyzed using analysis of variances. Finally, desirability function was used to optimize the process in rough and finish machining regimes. The obtained results showed that selection of eccentricity and cutter speed at their maximum working range can effectively enhance the quality characteristics in both the roughing and finishing regimes.


2016 ◽  
Vol 862 ◽  
pp. 26-32 ◽  
Author(s):  
Michaela Samardžiová

There is a difference in machining by the cutting tool with defined geometry and undefined geometry. That is one of the reasons of implementation of hard turning into the machining process. In current manufacturing processes is hard turning many times used as a fine finish operation. It has many advantages – machining by single point cutting tool, high productivity, flexibility, ability to produce parts with complex shapes at one clamping. Very important is to solve machined surface quality. There is a possibility to use wiper geometry in hard turning process to achieve 3 – 4 times lower surface roughness values. Cutting parameters influence cutting process as well as cutting tool geometry. It is necessary to take into consideration cutting force components as well. Issue of the use of wiper geometry has been still insufficiently researched.


Sign in / Sign up

Export Citation Format

Share Document