Fractional-order Control Strategies for Power Electronic Buck Converters

2018 ◽  
Vol 51 (4) ◽  
pp. 48-53
Author(s):  
José Emilio Traver ◽  
Inés Tejado ◽  
Javier Prieto-Arranz ◽  
Blas M. Vinagre

Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3274
Author(s):  
Jose Rueda Torres ◽  
Zameer Ahmad ◽  
Nidarshan Veera Kumar ◽  
Elyas Rakhshani ◽  
Ebrahim Adabi ◽  
...  

Future electrical power systems will be dominated by power electronic converters, which are deployed for the integration of renewable power plants, responsive demand, and different types of storage systems. The stability of such systems will strongly depend on the control strategies attached to the converters. In this context, laboratory-scale setups are becoming the key tools for prototyping and evaluating the performance and robustness of different converter technologies and control strategies. The performance evaluation of control strategies for dynamic frequency support using fast active power regulation (FAPR) requires the urgent development of a suitable power hardware-in-the-loop (PHIL) setup. In this paper, the most prominent emerging types of FAPR are selected and studied: droop-based FAPR, droop derivative-based FAPR, and virtual synchronous power (VSP)-based FAPR. A novel setup for PHIL-based performance evaluation of these strategies is proposed. The setup combines the advanced modeling and simulation functions of a real-time digital simulation platform (RTDS), an external programmable unit to implement the studied FAPR control strategies as digital controllers, and actual hardware. The hardware setup consists of a grid emulator to recreate the dynamic response as seen from the interface bus of the grid side converter of a power electronic-interfaced device (e.g., type-IV wind turbines), and a mockup voltage source converter (VSC, i.e., a device under test (DUT)). The DUT is virtually interfaced to one high-voltage bus of the electromagnetic transient (EMT) representation of a variant of the IEEE 9 bus test system, which has been modified to consider an operating condition with 52% of the total supply provided by wind power generation. The selected and programmed FAPR strategies are applied to the DUT, with the ultimate goal of ascertaining its feasibility and effectiveness with respect to the pure software-based EMT representation performed in real time. Particularly, the time-varying response of the active power injection by each FAPR control strategy and the impact on the instantaneous frequency excursions occurring in the frequency containment periods are analyzed. The performed tests show the degree of improvements on both the rate-of-change-of-frequency (RoCoF) and the maximum frequency excursion (e.g., nadir).


2021 ◽  
Vol 144 ◽  
pp. 110702
Author(s):  
Tchule Nguiwa ◽  
Gabriel Guilsou Kolaye ◽  
Mibaile Justin ◽  
Djaouda Moussa ◽  
Gambo Betchewe ◽  
...  

2013 ◽  
Vol 811 ◽  
pp. 657-660 ◽  
Author(s):  
You Jie Ma ◽  
Hong De Yuan ◽  
Xue Song Zhou

With the wide application of power electronic equipments in power system, more and more harmonic are poured into the power system, which cause power pollution and make the power quality problem increasingly serious. Active power filter (APF) is an important equipment to compensate harmonic and reactive current in power system. One of the key technologies lies in the real-time and accurate control. The fundamental principles of several control strategies of compensate current were presented, and the respective merit and demerit of these control strategies were pointed out with contrast analysis in this paper. Active power filter will achieve a higher performance and a wider application with the continuous development of the control strategy.


Sign in / Sign up

Export Citation Format

Share Document