StrDip: A Fast Data Stream Clustering Algorithm Using the Dip Test of Unimodality

Author(s):  
Yonghong Luo ◽  
Ying Zhang ◽  
Xiaoke Ding ◽  
Xiangrui Cai ◽  
Chunyao Song ◽  
...  
2021 ◽  
Author(s):  
Christian Nordahl ◽  
Veselka Boeva ◽  
Håkan Grahn ◽  
Marie Persson Netz

AbstractData has become an integral part of our society in the past years, arriving faster and in larger quantities than before. Traditional clustering algorithms rely on the availability of entire datasets to model them correctly and efficiently. Such requirements are not possible in the data stream clustering scenario, where data arrives and needs to be analyzed continuously. This paper proposes a novel evolutionary clustering algorithm, entitled EvolveCluster, capable of modeling evolving data streams. We compare EvolveCluster against two other evolutionary clustering algorithms, PivotBiCluster and Split-Merge Evolutionary Clustering, by conducting experiments on three different datasets. Furthermore, we perform additional experiments on EvolveCluster to further evaluate its capabilities on clustering evolving data streams. Our results show that EvolveCluster manages to capture evolving data stream behaviors and adapts accordingly.


2013 ◽  
Vol 33 (9) ◽  
pp. 2477-2481
Author(s):  
Jianpeng ZHANG ◽  
Xin JIN ◽  
Fucai CHEN ◽  
Hongchang CHEN ◽  
Ying HOU

2015 ◽  
Vol 77 (18) ◽  
Author(s):  
Maryam Mousavi ◽  
Azuraliza Abu Bakar

In recent years, clustering methods have attracted more attention in analysing and monitoring data streams. Density-based techniques are the remarkable category of clustering techniques that are able to detect the clusters with arbitrary shapes and noises. However, finding the clusters with local density varieties is a difficult task. For handling this problem, in this paper, a new density-based clustering algorithm for data streams is proposed. This algorithm can improve the offline phase of density-based algorithm based on MinPts parameter. The experimental results show that the proposed technique can improve the clustering quality in data streams with different densities.


2018 ◽  
Vol 7 (2) ◽  
pp. 270 ◽  
Author(s):  
Shyam Sunder Reddy K ◽  
Shoba Bindu C

Real-time data stream clustering has been widely used in many fields, and it can extract useful information from massive sets of data. Most of the existing density-based algorithms cluster the data streams based on the density within the micro-clusters. These algorithms completely omit the data density in the area between the micro-clusters and recluster the micro-clusters based on erroneous assumptions about the distribution of the data within and between the micro-clusters that lead to poor clustering results. This paper describes a novel density-based clustering algorithm for evolving data streams called MCDAStream, which clusters the data stream based on micro-cluster density and attraction between the micro-clusters. The attraction of micro-clusters characterizes the positional information of the data points in each micro-cluster. We generate better clustering results by considering both micro-cluster density and attraction of micro-clusters. The quality of the proposed algorithm is evaluated on various synthetic and real-time datasets with distinct characteristics and quality metrics.


Sign in / Sign up

Export Citation Format

Share Document