Optimization of the Flow Behavior of Molten Steel in Ultrahigh-Speed Billet Continuous Casting Mold

Author(s):  
Pei Xu ◽  
Dengfu Chen ◽  
Shixin Wu ◽  
Hengsong Yu ◽  
MuJun Long ◽  
...  
2012 ◽  
Vol 538-541 ◽  
pp. 1076-1079
Author(s):  
Xing Juan Wang ◽  
Li Guang Zhu ◽  
Ran Liu ◽  
Zhi Hao Li ◽  
Peng Tian

Using finite element method, the molten steel flow process in soft-contact electromagnetic continuous casting mold is simulated. The results show that the molten steel surface were affected by the electromagnetic force and shrink to the centre, near meniscus zone the flow velocity of steel increases and appears an obvious circumfluence, a large number of inclusion float and are absorbed by flux; on the other hand, the turbulent kinetic energy significant increases in circumfluence area, this exacerbates the reaction between flux and liquid steel, the initial size of the solidification organization are refined, and the surface quality of slab are enhanced.


Metals ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 66 ◽  
Author(s):  
Wenjie Zhang ◽  
Sen Luo ◽  
Yao Chen ◽  
Weiling Wang ◽  
Miaoyong Zhu

Electromagnetic stirring in mold (M-EMS) has been widely used in continuous casting process to improve the solidification quality of the steel strand. In the present study, a 3D multi-physical-field mathematical model was developed to predict the macro transport phenomena in continuous casting mold with M-EMS using ANSYS commercial software, and was adopted to investigate the effect of current intensity (0, 150, 200, and 240 A) on the heat, momentum, and species transports in the billet continuous casting mold with a size of 160 mm × 160 mm. The results show that when the M-EMS is on, the horizontal swirling flow appears and shifts the high-temperature zone upward. With the increase of current intensity, two swirling flows form on the longitudinal section of continuous casting mold and become more intensive, and the flow velocity of the molten steel at the solidification front increases. Thus, the wash effects of the fluid flow on the initial solidified shell become intensive, resulting in a thinner shell thickness at the mold exit and a significant negative segregation of carbon at the billet subsurface.


2012 ◽  
Vol 217-219 ◽  
pp. 1942-1945
Author(s):  
Zhu Zhang ◽  
Yan Juan Jin ◽  
Jun Ting Zhang

In the paper a inner-outer couple cooling technology of molten steel for 1240×200mm slab continuous casting, that is to set an inner cooler-U shape pipes in the mold, is put forward in order to enhance the efficiency of transmitting heat and improve the flow status of molten steel. The flow status of molten steel in inner-outer couple cooling mold is simulated by using fluid dynamics software. It is found that setting inner cooler in the mold can make molten steel flow status even, which partly act as electromagnetic trig and is favorable to inclusion in molten steel floating up.


1996 ◽  
Vol 36 (Suppl) ◽  
pp. S201-S203 ◽  
Author(s):  
K. H. Moon ◽  
H. K. Shin ◽  
B. J. Kim ◽  
J. Y. Chung ◽  
Y. S. Hwang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document