Research on Automatic Text Summarization Method Based on TF-IDF

Author(s):  
Tao Zhang ◽  
Cai Chen
Author(s):  
Winda Yulita ◽  
Sigit Priyanta ◽  
Azhari SN

One simple automatic text summarization method that can minimize redundancy, in summary, is the Maximum Marginal Relevance (MMR) method. The MMR method has the disadvantage of having parts that are separated from each other in summary results that are not semantically connected. Therefore, this study aims to compare summary results using the MMR method based on semantic and non-semantic based MMR. Semantic-based MMR methods utilize WordNet Bahasa and corpus in processing text summaries. The MMR method is non-semantic based on the TF-IDF method. This study also carried out summary compression of 30%, 20%, and 10%. The research data used is 50 online news texts. Testing of the summary text results is done using the ROUGE toolkit. The results of the study state that the best value of the f-score in the semantic-based MMR method is 0.561, while the best f-score in the non-semantic MMR method is 0.598. This value is generated by adding a preprocessing process in the form of stemming and compression of a 30% summary result. The difference in value obtained is due to incomplete WordNet Bahasa and there are several words in the news title that are not in accordance with EYD (KBBI).


2021 ◽  
Vol 10 (2) ◽  
pp. 42-60
Author(s):  
Khadidja Chettah ◽  
Amer Draa

Automatic text summarization has recently become a key instrument for reducing the huge quantity of textual data. In this paper, the authors propose a quantum-inspired genetic algorithm (QGA) for extractive single-document summarization. The QGA is used inside a totally automated system as an optimizer to search for the best combination of sentences to be put in the final summary. The presented approach is compared with 11 reference methods including supervised and unsupervised summarization techniques. They have evaluated the performances of the proposed approach on the DUC 2001 and DUC 2002 datasets using the ROUGE-1 and ROUGE-2 evaluation metrics. The obtained results show that the proposal can compete with other state-of-the-art methods. It is ranked first out of 12, outperforming all other algorithms.


2020 ◽  
Vol 8 (6) ◽  
pp. 3281-3287

Text is an extremely rich resources of information. Each and every second, minutes, peoples are sending or receiving hundreds of millions of data. There are various tasks involved in NLP are machine learning, information extraction, information retrieval, automatic text summarization, question-answered system, parsing, sentiment analysis, natural language understanding and natural language generation. The information extraction is an important task which is used to find the structured information from unstructured or semi-structured text. The paper presents a methodology for extracting the relations of biomedical entities using spacy. The framework consists of following phases such as data creation, load and converting the data into spacy object, preprocessing, define the pattern and extract the relations. The dataset is downloaded from NCBI database which contains only the sentences. The created model evaluated with performance measures like precision, recall and f-measure. The model achieved 87% of accuracy in retrieving of entities relation.


1996 ◽  
Author(s):  
Thérèse Firmin ◽  
Inderjeet Mani

In a world where information is growing rapidly every single day, we need tools to generate summary and headlines from text which is accurate as well as short and precise. In this paper, we have described a method for generating headlines from article. This is done by using hybrid pointer-generator network with attention distribution and coverage mechanism on article which generates abstractive summarization followed by the application of encoder-decoder recurrent neural network with LSTM unit to generate headlines from the summary. Hybrid pointer generator model helps in removing inaccuracy as well as repetitions. We have used CNN / Daily Mail as our dataset.


Sign in / Sign up

Export Citation Format

Share Document