Numerical Analysis of Joukowski (T = 12%) Airfoil by k-ε Turbulence Model at High Reynolds Number

Author(s):  
Ravi Jain ◽  
Mohd. Yunus Sheikh ◽  
Dharmendra Singh ◽  
Manoj Tripathi
1991 ◽  
Vol 113 (1) ◽  
pp. 83-90 ◽  
Author(s):  
M. Williams ◽  
W. C. Chen ◽  
G. Bache´ ◽  
A. Eastland

This paper presents an analysis methodology for the calculation of the flow through internal flow components with a rotating wall such as annular seals, impeller cavities, and enclosed rotating disks. These flow systems are standard components in gas turbines and cryogenic engines and are characterized by subsonic viscous flow and elliptic pressure effects. The Reynolds-averaged Navier-Stokes equations for turbulent flow are used to model swirling axisymmetric flow. Bulk-flow or velocity profile assumptions aren’t required. Turbulence transport is assumed to be governed by the standard two-equation high Reynolds number turbulence model. A low Reynolds number turbulence model is also used for comparison purposes. The high Reynolds number turbulence model is found to be more practical. A novel treatment of the radial/swirl equation source terms is developed and used to provide enhanced convergence. Homogeneous wall roughness effects are accounted for. To verify the analysis methodology, the flow through Yamada seals, an enclosed rotating disk, and a rotating disk in a housing with throughflow are calculated. The calculation results are compared to experimental data. The calculated results show good agreement with the experimental results.


AIP Advances ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 095012 ◽  
Author(s):  
A. Aravind Raghavan Sreenivasan ◽  
B. Kannan Iyer

1995 ◽  
Vol 2 (1) ◽  
pp. 51-58
Author(s):  
P. Tekriwal

The objective of the current modeling effort is to validate the numerical model and improve upon the prediction of heat transfer in rotating systems. Low-Reynolds number turbulence model (without the wall function) has been employed for three-dimensional heat transfer predictions for radially outward flow in a square cooling duct rotating about an axis perpendicular to its length. Computations are also made using the standard and extended high-Reynolds number kturbulence models (in conjunction with the wall function) for the same flow configuration. The results from all these models are compared with experimental data for flows at different rotation numbers and Reynolds number equal to 25,000. The results show that the low-Reynolds number model predictions are not as good as the high-Re model predictions with the wall function. The wall function formulation predicts the right trend of heat transfer profile and the agreement with the data is within 30% or so for flows at high rotation number. Since the Navier-Stokes equations are integrated all the way to wall in the case of low-Re model, the computation time is relatively high and the convergence is rather slow, thus rendering the low-Re model as an unattractive choice for rotating flows at high Reynolds number.The extended k-ε turbulence model is also employed to compute heat transfer for rotating flows with uneven wall temperatures and uniform wall heat flux conditions. The comparison with the experimental data available in literature shows that the predictions on both the leading wall and the trailing wall are satisfactory and within 5-25% agreement.


1983 ◽  
Vol 26 (219) ◽  
pp. 1534-1541 ◽  
Author(s):  
Shigeaki MASUDA ◽  
Hide S. KOYAMA ◽  
Ichiro ARIGA

Sign in / Sign up

Export Citation Format

Share Document