Frustrated Lewis Pairs Based on Transition Metals

Author(s):  
Nereida Hidalgo ◽  
Macarena G. Alférez ◽  
Jesús Campos
2020 ◽  
Author(s):  
Nereida Hidalgo ◽  
Juan Jose Moreno ◽  
Marina Pérez-Jiménez ◽  
Celia Maya ◽  
Joaquin López-Serrano ◽  
...  

Introducing transition metals into frustrated Lewis pair systems has attracted considerable attention in recent years. Here we report a selection of three metal-only frustrated systems based on Au(I)/Pt(0) combinations and their reactivity towards alkynes. We have inspected the activation of the simplest alkyne, namely acetylene, as well as of other internal and terminal triply bonded hydrocarbons. The gold(I) fragments are stabilized by three bulky phosphines bearing terphenyl groups. We have observed that subtle modifications on the substituents of these ligands proved critical to control the regioselectivity of acetylene activation and the product distribution resulting from C(sp)—H cleavage of phenylacetylene. A mechanistic picture based on experimental observations and computational analysis is provided. As a result of the cooperative action of the two metals of the frustrated pairs, several uncommon heterobimetallic structures have been fully characterized.


2020 ◽  
Author(s):  
Nereida Hidalgo ◽  
Juan Jose Moreno ◽  
Marina Pérez-Jiménez ◽  
Celia Maya ◽  
Joaquin López-Serrano ◽  
...  

Introducing transition metals into frustrated Lewis pair systems has attracted considerable attention in recent years. Here we report a selection of three metal-only frustrated systems based on Au(I)/Pt(0) combinations and their reactivity towards alkynes. We have inspected the activation of the simplest alkyne, namely acetylene, as well as of other internal and terminal triply bonded hydrocarbons. The gold(I) fragments are stabilized by three bulky phosphines bearing terphenyl groups. We have observed that subtle modifications on the substituents of these ligands proved critical to control the regioselectivity of acetylene activation and the product distribution resulting from C(sp)—H cleavage of phenylacetylene. A mechanistic picture based on experimental observations and computational analysis is provided. As a result of the cooperative action of the two metals of the frustrated pairs, several uncommon heterobimetallic structures have been fully characterized.


2020 ◽  
Author(s):  
Nereida Hidalgo ◽  
Juan Jose Moreno ◽  
Marina Pérez-Jiménez ◽  
Celia Maya ◽  
Joaquin López-Serrano ◽  
...  

Introducing transition metals into frustrated Lewis pair systems has attracted considerable attention in recent years. Here we report a selection of three metal-only frustrated systems based on Au(I)/Pt(0) combinations and their reactivity towards alkynes. We have inspected the activation of the simplest alkyne, namely acetylene, as well as of other internal and terminal triply bonded hydrocarbons. The gold(I) fragments are stabilized by three bulky phosphines bearing terphenyl groups. We have observed that subtle modifications on the substituents of these ligands proved critical to control the regioselectivity of acetylene activation and the product distribution resulting from C(sp)—H cleavage of phenylacetylene. A mechanistic picture based on experimental observations and computational analysis is provided. As a result of the cooperative action of the two metals of the frustrated pairs, several uncommon heterobimetallic structures have been fully characterized.


2021 ◽  
Author(s):  
Deborah Hartmann ◽  
Sven Braner ◽  
Lutz Greb

Bis(perchlorocatecholato)silane and bidentate N,N- or N,P-heteroleptic donors form hexacoordinated complexes. Depending on the ring strain and hemilability in the adducts, Frustrated Lewis pair reactivity with aldehydes and catalytic ammonia borane...


2021 ◽  
Vol 03 (02) ◽  
pp. 174-183
Author(s):  
P. Chidchob ◽  
S. A. H. Jansen ◽  
S. C. J. Meskers ◽  
E. Weyandt ◽  
N. P. van Leest ◽  
...  

The introduction of a chemical additive to supramolecular polymers holds high potential in the development of new structures and functions. In this regard, various donor- and acceptor-based molecules have been applied in the design of these noncovalent polymers. However, the incorporation of boron–nitrogen frustrated Lewis pairs in such architectures is still rare despite their many intriguing properties in catalysis and materials science. The limited choices of suitable boron derivatives represent one of the main limitations for the advancement in this direction. Here, we examine the use of the commercially available tris(pentafluorophenyl)borane with various triphenylamine derivatives to create supramolecular B–N charge transfer systems. Our results highlight the importance of a proper balance between the donor/acceptor strength and the driving force for supramolecular polymerization to achieve stable, long-range ordered B–N systems. Detailed analyses using electron paramagnetic resonance and optical spectroscopy suggest that tris(pentafluorophenyl)borane displays complex behavior with the amide-based triphenylamine supramolecular polymers and may interact in dimers or larger chiral aggregates, depending on the specific structure of the triphenylamines.


2019 ◽  
Vol 55 (5) ◽  
pp. 675-678 ◽  
Author(s):  
Jorge Juan Cabrera-Trujillo ◽  
Israel Fernández

Herein we introduce a novel concept in FLP chemistry: aromaticity as the key factor enhancing the reactivity of FLPs.


2010 ◽  
Vol 46 (47) ◽  
pp. 8947 ◽  
Author(s):  
Jason G. M. Morton ◽  
Meghan A. Dureen ◽  
Douglas W. Stephan

Sign in / Sign up

Export Citation Format

Share Document