Structural Analysis of the Human Knee Kinematic Chain

Author(s):  
Esdras Salgado da Silva ◽  
Leonardo Mejia Rincon ◽  
Elias Renã Maletz ◽  
Daniel Martins
Author(s):  
Allaoua Brahmia ◽  
Ridha Kelaiaia

Abstract To establish an exercise in open muscular chain rehabilitation (OMC), it is necessary to choose the type of kinematic chain of the mechanical / biomechanical system that constitutes the lower limbs in interaction with the robotic device. Indeed, it’s accepted in biomechanics that a rehabilitation exercise in OMC of the lower limb is performed with a fixed hip and a free foot. Based on these findings, a kinematic structure of a new machine, named Reeduc-Knee, is proposed, and a mechanical design is carried out. The contribution of this work is not limited to the mechanical design of the Reeduc-Knee system. Indeed, to define the minimum parameterizing defining the configuration of the device relative to an absolute reference, a geometric and kinematic study is presented.


2016 ◽  
Vol 823 ◽  
pp. 277-282
Author(s):  
Viorica Velișcu ◽  
Dan Mesarici ◽  
Păun Antonescu

The paper presents a structural analysis of the complex mechanisms type screw-jack. The mechanism mobilityanalysis using various generally applicable formulas has been performed. A newkinematic scheme of the jack linkage has been proposed. Besides the actuatorscrew, it has a planar kinematic chain with articulated bars. With regard tothis new mechanism, an algorithm for static calculus has been developed, inwhich the automobile gravity force is the main exterior force.


2014 ◽  
Vol 592-594 ◽  
pp. 1165-1169
Author(s):  
Preeti Gulia ◽  
V.P. Singh

The present work is focused on the graph theory which is used for structural analysis of kinematic chain and identification of degree of freedom. A method based on graph theory is proposed in this paper to solve structural problems by using a suitable example of fourteen links kinematic chain. Purpose of this paper is to give an easy and reliable method for structural analysis of fourteen links kinematic chain. Here, a simple incidence matrix is used to represent the kinematic chain. The proposed method is applied for determining the characteristic polynomial equation of fourteen links kinematic chain. An algebraic test based on graph theory is also used for identifying degree of freedom of kinematic chain whether it is total, partial or fractionated degree of freedom.


2019 ◽  
Vol 20 (7) ◽  
pp. 428-436
Author(s):  
A. K. Tolstosheev ◽  
V. A. Tatarintsev

The work is devoted to improving the reliability and manufacturability of mechatronic machine designs with parallel kinematics by replacing statically indeterminable manipulators with statically determinable mechanisms. A technique is proposed in which the design of statically determinable manipulators of technological mechatronic machines with parallel kinematics is performed by modifying the structure of prototypes and includes three steps: identifying and analyzing redundant links, eliminating redundant links, checking the correctness of eliminating redundant links. To determine the number of degrees of freedom of the mechanism, identify redundant links, and verify the solution, the authors use the proposed methodology for structural analysis of parallel structure mechanisms. In structural analysis, a manipulator is represented by a hierarchical structure and is considered as a parallel connection of elementary mechanisms with an open kinematic chain; as a kinematic chain consisting of leading and driven parts; as a set of links and kinematic pairs; as a kinematic connection of the output link and the rack. The article implements the following techniques for eliminating redundant links: mobility increase in kinematic pairs; introduction of unloading links and passive kinematic pairs to the kinematic chain; exclusion of extra links and pairs from the kinematic chain; increase in mobility in some kinematic pairs simultaneously with the exclusion of other kinematic pairs that have become superfluous. The authors developed several variants of structural schemes of self-aligning manipulators based on the Orthoglide mechanism, which retain the basic functional proper ties of the prototype. To increase the number of self-aligning mechanism diagrams, the redistribution of mobilities and links within the connecting kinematic chain and between connecting kinematic chains is used. The proposed methodics allow to determine the number of degrees of freedom of the mechanism, the number and type of redundant links, eliminate redundant links and, on an alternative basis, build structural diagrams of statically determinable mechanisms of technological mechatronic machines with parallel kinematics.


2011 ◽  
Vol 418-420 ◽  
pp. 2050-2054
Author(s):  
Hong Bing Xin ◽  
Qiang Huang ◽  
Yue Qing Yu

The coupling degree and structure factor of mechanism are the important parameters for the research of principle of mechanism structure, kinematics and dynamics in the ordinal single opened chain method, This article presents the algorithm of coupling degree for the kinematic chain with compound hinges on the basis of that for the kinematic chain without compound hinges and the dual-color topology graph, through which the mechanism with compound hinges can be decomposed into basic kinematic chains, the correctness of the algorithm has been verified by the practical example.


Author(s):  
M.A. Piskunov

The structural schemes of hydraulic manipulators used in the roundwood handling operations are presented. The seventeen schemes of manipulators are considered. The characteristic technological processes are identified, the nominal motions of the attachment mounted on the manipulator are described and the structure of the manipulator used in each process is considered. The variety of structures of linkage mechanisms in manipulators is associated both with the accumulation of Assur groups and with the increase in the Assur group class. Mechanisms with the number of Assur groups up to 4 are used. Assur groups of 2nd and 3rd classes are mainly found in the mechanisms. Adding the degree of freedom to the manipulator is accompanied by emerging of an additional kinematic chain in the structure. The structures studied are divided into two groups: the first covers the structures in which the input links are attached to the column; the second consists of structures with internal inputs. Variants of additional classification features are proposed for structures with internal inputs. The known provisions of structural analysis as a whole allow the analysis to be performed if the internal input is separated out as an individual input link. Otherwise, it is necessary to correct the approaches to the structural analysis of mechanisms having internal input links.


1979 ◽  
Vol 101 (3) ◽  
pp. 488-494 ◽  
Author(s):  
T. S. Mruthyunjaya ◽  
M. R. Raghavan

A method based on Bocher’s formulae has been presented for determining the characteristic coefficients (which have recently been suggested [19] as an index of isomorphism) of the matrix associated with the kinematic chain. The method provides an insight into the physical meaning of these coefficients and leads to a possible way of arriving at the coefficients by an inspection of the chain. A modification to the matrix notation is proposed with a view to permit derivation of all possible mechanisms from a kinematic chain and distinguishing the structurally distinct ones. Algebraic tests are presented for determining whether a chain possesses total, partial or fractionated freedom. Finally a generalized matrix notation is proposed to facilitate representation and analysis of multiple-jointed chains.


1981 ◽  
Vol 103 (3) ◽  
pp. 578-584 ◽  
Author(s):  
H. S. Yan ◽  
A. S. Hall

A linkage characteristic polynomial is defined as the characteristic polynomial of the adjacency matrix of the kinematic graph of the kinematic chain. Some terminology and definitions, needed for discussions to follow in a companion paper, are stated. A rule from which all coefficients of the characteristic polynomial of a kinematic chain can be identified by inspection, based on the interpretation of a graph determinant, is derived and presented. This inspection rule interprets the topological meanings behind each characteristic coefficient, and might have some interesting possible uses in studies of the structural analysis and synthesis of kinematic chains.


Author(s):  
W. H. Wu ◽  
R. M. Glaeser

Spirillum serpens possesses a surface layer protein which exhibits a regular hexagonal packing of the morphological subunits. A morphological model of the structure of the protein has been proposed at a resolution of about 25 Å, in which the morphological unit might be described as having the appearance of a flared-out, hollow cylinder with six ÅspokesÅ at the flared end. In order to understand the detailed association of the macromolecules, it is necessary to do a high resolution structural analysis. Large, single layered arrays of the surface layer protein have been obtained for this purpose by means of extensive heating in high CaCl2, a procedure derived from that of Buckmire and Murray. Low dose, low temperature electron microscopy has been applied to the large arrays.As a first step, the samples were negatively stained with neutralized phosphotungstic acid, and the specimens were imaged at 40,000 magnification by use of a high resolution cold stage on a JE0L 100B. Low dose images were recorded with exposures of 7-9 electrons/Å2. The micrographs obtained (Fig. 1) were examined by use of optical diffraction (Fig. 2) to tell what areas were especially well ordered.


Author(s):  
E. Loren Buhle ◽  
Pamela Rew ◽  
Ueli Aebi

While DNA-dependent RNA polymerase represents one of the key enzymes involved in transcription and ultimately in gene expression in procaryotic and eucaryotic cells, little progress has been made towards elucidation of its 3-D structure at the molecular level over the past few years. This is mainly because to date no 3-D crystals suitable for X-ray diffraction analysis have been obtained with this rather large (MW ~500 kd) multi-subunit (α2ββ'ζ). As an alternative, we have been trying to form ordered arrays of RNA polymerase from E. coli suitable for structural analysis in the electron microscope combined with image processing. Here we report about helical polymers induced from holoenzyme (α2ββ'ζ) at low ionic strength with 5-7 mM MnCl2 (see Fig. 1a). The presence of the ζ-subunit (MW 86 kd) is required to form these polymers, since the core enzyme (α2ββ') does fail to assemble into such structures under these conditions.


Sign in / Sign up

Export Citation Format

Share Document