Grazing and Understory Fuel Load Reduction: An Exploration Based on Rothermel’s Surface-Fire Model and GPS Tracking of Herds

2021 ◽  
pp. 497-535
Author(s):  
Eugene D. Ungar ◽  
Mor Ashkenazi ◽  
Reuven Horn ◽  
Maya Millet ◽  
Maya Zahavi ◽  
...  
2010 ◽  
Vol 19 (4) ◽  
pp. 478 ◽  
Author(s):  
Neil H. Berg ◽  
David L. Azuma

Accelerated erosion commonly occurs after wildfires on forested lands. As burned areas recover, erosion returns towards prefire rates depending on many site-specific characteristics, including fire severity, vegetation type, soil type and climate. In some areas, erosion recovery can be rapid, particularly where revegetation is quick. Erosion recovery is less well understood for many fuel load reduction treatments. The rate of post-disturbance erosion recovery affects management options for forested lands, particularly when considering the combined ramifications of multiple disturbances on resource recovery rates (i.e. cumulative watershed effects). Measurements of percentage bare soil and rilling on over 600 plots in the southern Sierra Nevada with slopes less than 75% and within 1 km of roads were made between 2004 and 2006. Results suggest that after high-, moderate- or low-severity wildfire, rilling was seldom evident more than 4 years after fire. Percentage bare soil generally did not differ significantly between reference plots and wildfire plots greater than 6 years old. Little rilling was evident after treatment with a variety of fuel reduction techniques, including burning of machine- and hand-piled fuel, thinning, mastication, and crushing. Percentage bare soil at the fuel load reduction treatment plots also did not differ significantly from reference conditions. Percentage bare soil at pine plantation plots was noticeably higher than at reference sites.


2017 ◽  
pp. 1-11 ◽  
Author(s):  
F. Ximenes ◽  
M. Stephens ◽  
M. Brown ◽  
B. Law ◽  
M. Mylek ◽  
...  

Fire ◽  
2019 ◽  
Vol 2 (3) ◽  
pp. 37
Author(s):  
Renaud Mathieu ◽  
Russell Main ◽  
David P. Roy ◽  
Laven Naidoo ◽  
Hannah Yang

Savannahs are mixed woody-grass communities where low-intensity surface fires are common, affecting mostly the grass layer and rarely damaging trees. We investigated the effect of surface fires in a savannah system in the Kruger National Park, South Africa, on the backscatter of synthetic aperture radar (SAR) C-band Sentinel-1A images. Pre-fire and post-fire dual polarized (VH, VV) C-band backscatter values were examined for 30 burn events. For all events, a systematic backscatter decrease from pre-fire to post-fire conditions was observed, with mean backscatter decreases of 1.61 dB and 0.99 dB for VH and VV, respectively. A total of 90% and 75% of the burn events showed a decrease in VH and VV backscatter greater than 0.43 dB, the overall absolute radiometric of Sentinel-1A products. The VH data were, overall, 1.7 times more sensitive to surface fire effects than the VV data. C-band data are likely sensitive to a reduction in grass biomass typical of surface fires, as well as in grass/soil moisture levels. Early season fires had higher backscatter decreases due to greater early season moisture conditions. For region with more than 30% woody cover, the effect of fire on the C-band backscatter was reduced. Denser woody communities tend to produce lower grass fuel load and less intense surface fires, and limit the penetration of C-band microwaves to the ground where most savannah fires and associated effects occur. This research provides evidence that C-band space-borne SAR is sensitive to the effects of surface-level fires in southern African savannahs. The unique availability of frequent and spatially detailed C-band data from the Sentinel-1 SAR constellation provide new opportunities for burned area mapping and systematic monitoring in savannahs systems, for instance, for fine-scale fire propagation studies.


1994 ◽  
Vol 4 (2) ◽  
pp. 103 ◽  
Author(s):  
RS Mc Alpine ◽  
MW Hobbs

A critical parameter for the initiation and propagation of a crown fire in the boreal forest is the height to the base of the live crown. The initiation of a crown fire requires that the surface fire intensity must be sufficient to ''jump'' the gap between the forest floor and the live crown and ignite crown fuels. The greater the height of the live crown base, the more intense the surface fire must be to induce a crown fire. Plantation forest fuels tend to be more structured and have less variability than naturally regenerated areas, allowing prediction of the height of the live crown base to be made from commonly available stand parameters. Plantations of four commonly planted boreal forest species were sampled over a variety of age classes to determine a predictive relationship for height to live crown base. Height to live crown base can be predicted from stand height and density for Pinus banksiana (jack pine), Pinus resinosa (red pine), Picea mariana (black spruce), and Picea glauca (white spruce). In addition to predicting the height to live crown base, parameters within the equations lead to other observations. Crown foliar fuel loading does not change with stand height following crown closure in red pine but in the other three species crown fuel load increases as the stand grows taller.


2014 ◽  
Vol 134 (8) ◽  
pp. 702-715
Author(s):  
Masahito Takahashi ◽  
Tsuyoshi Ueno ◽  
Shigeru Bando ◽  
Atsushi Kurosaki ◽  
Takashi Koyanagi ◽  
...  

2012 ◽  
Vol 11 (8) ◽  
pp. 1475-1480 ◽  
Author(s):  
Omer Kucuk ◽  
Ertugrul Bilgili ◽  
Serkan Bulut ◽  
Paulo M. Fernandes

Sign in / Sign up

Export Citation Format

Share Document