Quantifying News Narratives to Predict Movements in Market Risk
AbstractThe theory of Narrative Economics suggests that narratives present in media influence market participants and drive economic events. In this chapter, we investigate how financial news narratives relate to movements in the CBOE Volatility Index. To this end, we first introduce an uncharted dataset where news articles are described by a set of financial keywords. We then perform topic modeling to extract news themes, comparing the canonical latent Dirichlet analysis to a technique combining doc2vec and Gaussian mixture models. Finally, using the state-of-the-art XGBoost (Extreme Gradient Boosted Trees) machine learning algorithm, we show that the obtained news features outperform a simple baseline when predicting CBOE Volatility Index movements on different time horizons.