An Improved Routing Strategy Based on Virtual Topology in LEO Satellite Networks

Author(s):  
Chaoran Sun ◽  
Yu Zhang ◽  
Jian Zhu
2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Jian Zhou ◽  
Qian Bo ◽  
Lijuan Sun ◽  
Juan Wang ◽  
Xiaoyong Yan

The deployment of Mobile Edge Computing (MEC) servers on Low Earth Orbit (LEO) satellites to form MEC satellites is of increasing concern. A routing strategy is the key technology in MEC satellites. To solve the uncertainty problem of LEO satellite link information caused by complex space environments, a routing strategy for LEO satellite networks based on membership degree functions is proposed. First, a routing model based on uncertain link information is established. In particular, the membership function is designed to describe the uncertain link information. Based on this, the comprehensive evaluation of the path is calculated, and the routing model considering uncertainty is established with the comprehensive evaluation of the path as the optimization objective. Second, in order to quickly calculate the path, a grey wolf optimization algorithm is designed to solve the routing model. Finally, simulation results show that the proposed strategy can achieve efficient and secure routing in complex space environments and improve the overall performance compared with the performances of traditional routing strategies.


Electronics ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 920 ◽  
Author(s):  
Cheng Wang ◽  
Huiwen Wang ◽  
Weidong Wang

Low Earth Orbit (LEO) satellite networks can provide complete connectivity and worldwide data transmission capability for the internet of things. However, arbitrary flow arrival and uneven traffic load among areas bring about unbalanced traffic distribution over the LEO constellation. Therefore, the routing strategy in LEO networks should have the ability to adjust routing paths based on changes in network status adaptively. In this paper, we propose a Two-Hops State-Aware Routing Strategy Based on Deep Reinforcement Learning (DRL-THSA) for LEO satellite networks. In this strategy, each node only needs to obtain the link state within the range of two-hop neighbors, and the optimal next-hop node can be output. The link state is divided into three levels, and the traffic forwarding strategy for each level is proposed, which allows DRL-THSA to cope with link outage or congestion. The Double-Deep Q Network (DDQN) is proposed in DRL-THSA to figure out the optional next hop by inputting the two-hops link states. The DDQN is analyzed from three aspects: model setting, training process and running process. The effectiveness of DRL-THSA, in terms of end-to-end delay, throughput, and packet drop rate, is verified via a set of simulations using the Network Simulator 3 (NS3).


Sign in / Sign up

Export Citation Format

Share Document