Noise and Vibration Mitigation for Rail Transportation Systems

2021 ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 3753 ◽  
Author(s):  
Sakdirat Kaewunruen ◽  
Victor Martin

Significant increase in the demand for freight and passenger transports by trains pushes the railway authorities and train companies to increase the speed, the axle load and the number of train carriages/wagons. All of these actions increase ground-borne noise and vibrations that negatively affect people who work, stay, or reside nearby the railway lines. In order to mitigate these phenomena, many techniques have been developed and studied but there is a serious lack of life-cycle information regarding such the methods in order to make a well-informed and sustainable decision. The aim of this study is to evaluate the life-cycle performance of mitigation methods that can enhance sustainability and efficacy in the railway industry. The emphasis of this study is placed on new methods for ground-borne noise and vibration mitigation including metamaterials, geosynthetics, and ground improvement. To benchmark all of these methods, identical baseline assumptions and the life-cycle analysis over 50 years have been adopted where relevant. This study also evaluates and highlights the impact of extreme climate conditions on the life-cycle cost of each method. It is found that the anti-resonator method is the most expensive methods compared with the others whilst the use of geogrids (for subgrade stiffening) is relatively reliable when used in combination with ground improvements. The adverse climate has also played a significant role in all of the methods. However, it was found that sustainable methods, which are less sensitive to extreme climate, are associated with the applications of geosynthetic materials such as geogrids, composites, etc.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Koorosh Gharehbaghi ◽  
Kerry McManus ◽  
Matt Myers

Purpose As a part of adaptive and complex system thinking, geographic information systems (GIS) are beneficial particularly for transportation projects, where uncertainty is frequent. Accordingly, this paper aims to examine the utilization of GIS in line with adaptive and complex system thinking, as the basis of the methodical formulation of perceived gaps within the integrated transportation planning (ITP) specifically for the mega transportation projects. Such a framework is undertaken, as the mega transportation projects although may seem straightforward, however, are problematic and require more consideration than the traditional triple bottom line factors. Using the Sydney Metro as the case study, the outcome demonstrates the significance of the fourth separate dimension of engineering into the aforementioned bottom-line factors. Design/methodology/approach The research examines the utilization of adaptive and complex system thinking, as the basis of the methodical formulation of perceived gaps within the ITP. The use of Sydney’s Metro project is a novel example of the proposed methodical formulation and its empirical assessment and provides a better understanding of the use of mapping and planning tools for mega transportation projects. Findings Aptly, using the developed conceptual framework, this research further validates the inclusion of a separate engineering dimension with the usual triple bottom line factors. Such inclusion is paramount in responding to the existing ITP gaps found within the current literature. Originality/value This research uses GIS and ITP process to support the aforementioned adaptive and complex system thinking. This, in turn, is used as the basis of a methodical formulation framework in dealing with mega rail transportation infrastructure. To support such a proposition, Sydney Metro is examined as the basis of a case study.


Sign in / Sign up

Export Citation Format

Share Document