Determination of the Boundary Parameters of Equipment Operation in the Process of Destruction of Carbonate Sediments by Inertial-Cutting Tools

2021 ◽  
pp. 279-286
Author(s):  
I. R. Bondarenko ◽  
D. Yu. Volkov ◽  
L. A. Kovalev
Author(s):  
Marina V. Khlopkova

One of the ways to study the reactions of marine invertebrates to the external effects of changes in temperature and salinity is the biogeochemical analysis of skeletal parts, which are consistently built up during ontogenesis and record a variety of information about these changes. The most studied shells of mollusks, sea urchin shells and skeletal parts of corals. Information about the chemical composition of modern and fossil mollusk shells is widely used in solving geological and biological problems, including determining the temperature and salinity of ancient marine basins, studying the diagenesis of carbonate sediments, and the biochemical evolution of invertebrates. X-ray diffraction analysis of the shell matter of didacnae belonging to the Cardiidae showed an aragonite composition. The quantitative determination of elements in mollusk shells by microprobe analysis of spot scanning and spectrometric method is carried out. Samples were taken in successive layers of shell growth within the annual ring, and the seasonal dynamics of strontium changes were detected. For Didacna, strontium is the main element-indicator of seasonal and ontogenetic growth, is included in the crystal lattice of aragonite and forms strong compounds in the process of shell formation during the life of these bivalves. The variability of seasonal, ontogenetic, and taxonomic differences in a number of indicator elements in living and Pleistocene bivalves of the genus Didacna was studied.


2017 ◽  
Vol 261 ◽  
pp. 50-57 ◽  
Author(s):  
Joanna Krajewska-Śpiewak ◽  
Józef Gawlik

Under the influence of the pressure caused by the application of the cutting edge on the surface of the workpiece elastic waves are generated. Waves propagate in the material in every possible direction and can be identify by specialized measuring equipment. Acoustic emission phenomenon was used to determine the beginning of decohesion process. The article presents a new method for determination of the decohesion process during peripheral milling performed with the indexable cutting tools on samples made out of titanium based alloy and nickel based alloy.


POROS ◽  
2018 ◽  
Vol 16 (1) ◽  
Author(s):  
Sobron Yamin Lubis

Determination of optimum cutting speed in the lathe process should be considered in order to produce minimal machining costs and maximum production. Research The determination of optimum cutting speed was done to investigate the effect of cutting speed when cutting AISI 4140 steel against cost and production obtained. This study was conducted experimentally using lathe and theoretical calculations to determine machining costs and the amount of production produced. The lathe process is carried out using carbide cutting tools for cutting of AISI 4140 steel metal. In this machining the data obtained is the cutting time of the machining process tail loading process then the data is incorporated into the equation together with the cutting force, the cost of the cutting tools, the workpiece, the cost labourers. Then from the calculation results obtained by graph machining cost and production amount. Based on the graph, it is observed minimal machining cost and maximum production amount to know the optimum cutting point. The results obtained .The increase in cutting rate gives effect to the increase of production quantity, while for calculation of machining cost has decreased. Machining time has a significant effect on the change of production quantity and machining cost. The optimal cutting speed (Vcopt) is 269 m / min.


2021 ◽  
Vol 23 (4) ◽  
pp. 155-166
Author(s):  
Yuri Krutskii ◽  
◽  
Evgeny Maksimovskii ◽  
Roman Petrov ◽  
Olga Netskina ◽  
...  

Introduction. Titanium carbide and diboride are characterized by high values of hardness, chemical inertness and for this reason are widely used in modern technology. This paper provides information on the synthesis of titanium carbide and diboride by carbothermal and carbide-boron methods, respectively, on the use of titanium carbide as an abrasive and in the manufacture of tungsten-free hard alloys, carbide steels, wear-resistant coatings, as well as titanium diboride in the production of cutting tools and ceramics based on boron carbide The aim of this work is to study the processes of synthesis of highly dispersed powders of titanium carbide and diboride, which are promising for the manufacture of cutting tools, wear-resistant coatings, abrasives and ceramics. Research methods. Titanium oxide TiO2, nanofibrous carbon (NFC), and highly dispersed boron carbide were used as reagents for the synthesis of titanium carbide and diboride. Experiments to obtain titanium carbide were carried out in a resistance furnace, and titanium diboride in an induction furnace. X-ray studies of the phase composition of titanium carbide and diboride samples were carried out on an ARL X-TRA diffractometer (Thermo Electron SA). The determination of the content of titanium and impurities in the samples of titanium carbide and diboride was carried out by the X-ray spectral fluorescence method on an ARL-Advant'x analyzer. The total carbon content in the titanium carbide samples was determined on an S-144 device from LECO. The content of boron and other elements for titanium diboride samples was determined by inductively coupled plasma atomic emission spectrometry (ICP AES) on an IRIS Advantage spectrometer (Thermo Jarrell Ash Corporation). The surface morphology and particle sizes of the samples were studied using a Carl Zeiss Sigma scanning electron microscope (Carl Zeiss). The determination of the particle/aggregate size distribution was performed on a MicroSizer 201 laser analyzer (BA Instruments). Results. The paper proposes technological processes for obtaining highly dispersed powders of titanium carbide and diboride. The optimum synthesis temperature for titanium carbide is 2,000…2,100 oC, and for titanium diboride 1,600…1,700 oC. The content of the basic substance is at the level of 97.5…98.0 wt. %. Discussion. A possible mechanism for the formation of titanium carbide and diboride is proposed, which consists in the transfer of vapors of titanium oxides to the surface of solid carbon (synthesis of titanium carbide) and vapors of boron and titanium oxides to the surface of solid carbon (synthesis of titanium diboride). Due to the high purity and dispersion values, the resulting titanium carbide powder can be used as an abrasive material and for the manufacture of tungsten-free hard alloys, carbide steels, wear-resistant coatings, and titanium diboride powder can be used for the preparation of cutting tools and ceramics based on boron carbide.


Sign in / Sign up

Export Citation Format

Share Document