The Role of Machine Learning Techniques in Internet of Things-Based Cloud Applications

Author(s):  
Shashvi Mishra ◽  
Amit Kumar Tyagi
2019 ◽  
Vol 16 (10) ◽  
pp. 4214-4219
Author(s):  
Richa Sharma ◽  
Shalli Rani ◽  
Deepali Gupta

Over the years, Recommender systems have emerged as a means to provide relevant content to the users, be it in the field of entertainment, social-network, health, education, travel, food or tourism. Further,with the expeditious development of Big Data and Internet of Things (IoT), technology has successfully associated with our everyday life activities with smart healthcare being one. The global acceptance towards smart watches, wearable devices or wearable biosensors have paved the way for the evolution of novel applications for personalized eHealth and mHealth technologies. The data gathered by wearables can further be interpreted using Machine learning algorithms and shared with healthcare experts to provide suitable recommendations. In this work, we study the role of recommender systems in IoT and Cloud and vice-versa. Further, we have analyzed the performance of different machine learning techniques on SWELL dataset. Based on the results, it is observed that 2 Class Neural network performs the best with 98% accuracy.


Author(s):  
Deepti Rani ◽  
Anju Sangwan ◽  
Anupma Sangwan ◽  
Tajinder Singh

With the enormous growth of sensor networks, information seeking from such networks has become an invaluable source of knowledge for various organizations to enhance the comprehension of people interests. Not only wireless sensor networks (WSNs) but its various classes also remain the hot topics of research. In this chapter, the primary focus is to understand the concept of sensor network in underwater scenario. Various mechanisms are used to recognize the activities underwater using sensor which examines the real-time events. With these features, a few challenges are also associated with sensor networks, which are addressed here. Machine learning (ML) techniques are the perfect key of success to resolve such issues due to their feasibility and adaption in complex problem environment. Therefore, various ML techniques have been explained to enhance the operational performance of WSNs, especially in underwater WSNs (UWSNs). The main objective of this chapter is to understand the concepts of UWSNs and role of ML to address the performance issues of UWSNs.


2020 ◽  
Vol 15 (3) ◽  
pp. 340
Author(s):  
Abhishek Agnihotri ◽  
Vikash Yadav ◽  
Vandana Dixit Kaushik

2020 ◽  
Vol 9 ◽  
pp. 100153 ◽  
Author(s):  
Evanson Mwangi Karanja ◽  
Shedden Masupe ◽  
Mandu Gasennelwe Jeffrey

2020 ◽  
pp. 101806
Author(s):  
Omid Khalaj ◽  
Moslem Ghobadi ◽  
Alireza Zarezadeh ◽  
Ehsan Saebnoori ◽  
Hana Jirková ◽  
...  

Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-3 ◽  
Author(s):  
David Gil ◽  
Magnus Johnsson ◽  
Higinio Mora ◽  
Julian Szymanski

Sign in / Sign up

Export Citation Format

Share Document