Chinese Named Entity Recognition Based on BERT and Neural Network

Author(s):  
Sheping Zhai ◽  
Dan Gou ◽  
Huizhen Wang ◽  
Yun Chai
IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 45263-45270
Author(s):  
Chuanbo Liu ◽  
Chaojie Fan ◽  
Zhengju Wang ◽  
Yueqing Sun

Electronics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1001 ◽  
Author(s):  
Jingang Liu ◽  
Chunhe Xia ◽  
Haihua Yan ◽  
Wenjing Xu

Named entity recognition (NER) is a basic but crucial task in the field of natural language processing (NLP) and big data analysis. The recognition of named entities based on Chinese is more complicated and difficult than English, which makes the task of NER in Chinese more challenging. In particular, fine-grained named entity recognition is more challenging than traditional named entity recognition tasks, mainly because fine-grained tasks have higher requirements for the ability of automatic feature extraction and information representation of deep neural models. In this paper, we propose an innovative neural network model named En2BiLSTM-CRF to improve the effect of fine-grained Chinese entity recognition tasks. This proposed model including the initial encoding layer, the enhanced encoding layer, and the decoding layer combines the advantages of pre-training model encoding, dual bidirectional long short-term memory (BiLSTM) networks, and a residual connection mechanism. Hence, it can encode information multiple times and extract contextual features hierarchically. We conducted sufficient experiments on two representative datasets using multiple important metrics and compared them with other advanced baselines. We present promising results showing that our proposed En2BiLSTM-CRF has better performance as well as better generalization ability in both fine-grained and coarse-grained Chinese entity recognition tasks.


Author(s):  
Erdenebileg Batbaatar ◽  
Keun Ho Ryu

Named Entity Recognition (NER) in the healthcare domain involves identifying and categorizing disease, drugs, and symptoms for biosurveillance, extracting their related properties and activities, and identifying adverse drug events appearing in texts. These tasks are important challenges in healthcare. Analyzing user messages in social media networks such as Twitter can provide opportunities to detect and manage public health events. Twitter provides a broad range of short messages that contain interesting information for information extraction. In this paper, we present a Health-Related Named Entity Recognition (HNER) task using healthcare-domain ontology that can recognize health-related entities from large numbers of user messages from Twitter. For this task, we employ a deep learning architecture which is based on a recurrent neural network (RNN) with little feature engineering. To achieve our goal, we collected a large number of Twitter messages containing health-related information, and detected biomedical entities from the Unified Medical Language System (UMLS). A bidirectional long short-term memory (BiLSTM) model learned rich context information, and a convolutional neural network (CNN) was used to produce character-level features. The conditional random field (CRF) model predicted a sequence of labels that corresponded to a sequence of inputs, and the Viterbi algorithm was used to detect health-related entities from Twitter messages. We provide comprehensive results giving valuable insights for identifying medical entities in Twitter for various applications. The BiLSTM-CRF model achieved a precision of 93.99%, recall of 73.31%, and F1-score of 81.77% for disease or syndrome HNER; a precision of 90.83%, recall of 81.98%, and F1-score of 87.52% for sign or symptom HNER; and a precision of 94.85%, recall of 73.47%, and F1-score of 84.51% for pharmacologic substance named entities. The ontology-based manual annotation results show that it is possible to perform high-quality annotation despite the complexity of medical terminology and the lack of context in tweets.


Sign in / Sign up

Export Citation Format

Share Document