Upconversion Hybrid Phosphors for Biological Applications

Author(s):  
Kaushal Kumar ◽  
Sachin Kumar Maurya ◽  
Manoj Kumar Mahata
Author(s):  
Philippe Fragu

The identification, localization and quantification of intracellular chemical elements is an area of scientific endeavour which has not ceased to develop over the past 30 years. Secondary Ion Mass Spectrometry (SIMS) microscopy is widely used for elemental localization problems in geochemistry, metallurgy and electronics. Although the first commercial instruments were available in 1968, biological applications have been gradual as investigators have systematically examined the potential source of artefacts inherent in the method and sought to develop strategies for the analysis of soft biological material with a lateral resolution equivalent to that of the light microscope. In 1992, the prospects offered by this technique are even more encouraging as prototypes of new ion probes appear capable of achieving the ultimate goal, namely the quantitative analysis of micron and submicron regions. The purpose of this review is to underline the requirements for biomedical applications of SIMS microscopy.Sample preparation methodology should preserve both the structural and the chemical integrity of the tissue.


2016 ◽  
Vol 31 (4) ◽  
pp. 337 ◽  
Author(s):  
SUN Xiao-Dan ◽  
LIU Zhong-Qun ◽  
YAN Hao

Author(s):  
M. Vidyasagar

This book explores important aspects of Markov and hidden Markov processes and the applications of these ideas to various problems in computational biology. It starts from first principles, so that no previous knowledge of probability is necessary. However, the work is rigorous and mathematical, making it useful to engineers and mathematicians, even those not interested in biological applications. A range of exercises is provided, including drills to familiarize the reader with concepts and more advanced problems that require deep thinking about the theory. Biological applications are taken from post-genomic biology, especially genomics and proteomics. The topics examined include standard material such as the Perron–Frobenius theorem, transient and recurrent states, hitting probabilities and hitting times, maximum likelihood estimation, the Viterbi algorithm, and the Baum–Welch algorithm. The book contains discussions of extremely useful topics not usually seen at the basic level, such as ergodicity of Markov processes, Markov Chain Monte Carlo (MCMC), information theory, and large deviation theory for both i.i.d and Markov processes. It also presents state-of-the-art realization theory for hidden Markov models. Among biological applications, it offers an in-depth look at the BLAST (Basic Local Alignment Search Technique) algorithm, including a comprehensive explanation of the underlying theory. Other applications such as profile hidden Markov models are also explored.


Author(s):  
Shukla PK ◽  
Singh MP ◽  
Patel R

Indole and its derivatives have engaged a unique place in the chemistry of nitrogen heterocyclic compounds. The recognition of the plant growthhormone, heteroauxin, the significant amino acids, tryptamine & tryptophan and anti-inflammatory drug, indomethacine are the imperativederivatives of indole which have added stimulus to this review work. Isatin (1H-indole-2,3-dione), an indole derivative of plant origin. Althoughit is a naturally occurring compound, but was synthesized by Erdmann and Laurent in 1840 before it was found in nature. Isatin is a versatileprecursor for many biologically active molecules and its diversified nature makes it a versatile substrate for further modifications. It is concernedin many pharmacological activities like anti-malarial, antiviral, anti-allergic, antimicrobial etc; isatin and its derivatives have been also found todemonstrate promising outcomes against various cancer cell lines. This review provides a brief overview on the recent advances and futureperspectives on chemistry and biological aspects of isatin and its derivatives reported in the recent past.


Author(s):  
Raymond A. Lee ◽  
Patrick J. Wolpert

Abstract FIB Micromachining has long been an established technique, but until recently it has been overshadowed by the more mainstream semiconductor application of the Focused Ion Beam system. Nano- Structure fabrication using the FIB system has become more popular recently due to several factors. The need for sub-micron structures have grown significantly due to a need for enhanced optical and biological applications. Another reason for the growth in micromachining is the improvement made in the ability of FIB systems to produce geometric shapes with high precision. With the latest high-end FIB systems, it is possible to produce microstructures with tens of nano-meters of precision. Optical lens, AFM tips, and nano-apertures are all part of the growing application for FIB Micromachining. This paper will discuss the ability and limitations of the FIB system and some possible application for FIB Micromachining.


2017 ◽  
Vol 13 (1) ◽  
pp. 197-205
Author(s):  
Nefissa Meky ◽  
Rawda Badawy ◽  
Hadeer Mohamed ◽  
Shimaa Samir

Sign in / Sign up

Export Citation Format

Share Document