VTI Anisotropy in Wellbore Strengthening Model

Author(s):  
R. N. A. Akoto ◽  
D. Knez ◽  
L. Atepor
Author(s):  
Seyed Morteza Mirabbasi ◽  
Mohammad Javad Ameri ◽  
Mortadha Alsaba ◽  
Mohsen Karami ◽  
Amir Zargarbashi

2021 ◽  
Author(s):  
Chee Phuat Tan ◽  
Wan Nur Safawati Wan Mohd Zainudin ◽  
M Solehuddin Razak ◽  
Siti Shahara Zakaria ◽  
Thanavathy Patma Nesan ◽  
...  

Abstract Drilling in permeable formations, especially depleted reservoirs, can particularly benefit from simultaneous wellbore shielding and strengthening functionalities of drilling mud compounds. The ability to generate simultaneous wellbore shielding and strengthening in reservoirs has potential to widen stable mud weight windows to drill such reservoirs without the need to switch from wellbore strengthening compound to wellbore shielding compound, and vice-versa. Wellbore shielding and strengthening experiments were conducted on three outcrop sandstones with three mud compounds. The wellbore shielding stage was conducted by increasing the confining and borehole pressures in 4-5 steps until both reached target pressures. CT scan images demonstrate consistency of the filtration rates with observed CT scanned mud cakes which are dependent on the sandstone pore size and mud compound particle size distributions. In wellbore strengthening stage, the borehole pressure was increased until fracture was initiated, which was detected via borehole pressure trend and CT scan imaging. The fractures generated were observed to be plugged by mud filter solids which are visible in the CT scan images. The extent of observed fracture solid plugging varies with rock elastic properties, fracture width and mud compound particle size distribution. Based on the laboratory test data, fracture gradient enhancement concept was developed for the mud compounds. In addition, the data obtained and observations from the tests were used to develop optimal empirical design criteria and guidelines to achieve dual wellbore strengthening and shielding performance of the mud compounds. The design criteria were validated on a well which was treated with one of the mud compounds based on its mud loss events during drilling and running casing.


Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Biao Ma ◽  
Xiaolin Pu ◽  
Zhengguo Zhao ◽  
Hao Wang ◽  
Wenxin Dong

The lost circulation in a formation is one of the most complicated problems that have existed in drilling engineering for a long time. The key to solving the loss of drilling fluid circulation is to improve the pressure-bearing capacity of the formation. The tendency is to improve the formation pressure-bearing capacity with drilling fluid technology for strengthening the wellbore, either to the low fracture pressure of the formation or to that of the naturally fractured formation. Therefore, a laboratory study focused on core fracturing simulations for the strengthening of wellbores was conducted with self-developed fracture experiment equipment. Experiments were performed to determine the effect of the gradation of plugging materials, kinds of plugging materials, and drilling fluid systems. The results showed that fracture pressure in the presence of drilling fluid was significantly higher than that in the presence of water. The kinds and gradation of drilling fluids had obvious effects on the core fracturing process. In addition, different drilling fluid systems had different effects on the core fracture process. In the same case, the core fracture pressure in the presence of oil-based drilling fluid was less than that in the presence of water-based drilling fluid.


2015 ◽  
Vol 4 (4) ◽  
pp. 27-48
Author(s):  
Nediljka Gaurina-Međimurec ◽  
Borivoje Pašić ◽  
Petar Mijić

Lost circulation presents one of the major risks associated with drilling. The complete prevention of lost circulation is impossible but limiting circulation loss is possible if certain precautions are taken. Industry experience has proved that is often easier and more effective to prevent the occurrence of loss than to attempt to stop or reduce them once they have started. The problem of lost circulation was magnified considerably when operators began drilling deeper and/or depleted formations. A strategy for successful management of lost circulation should include preventative (best drilling practices, drilling fluid selection, and wellbore strengthening materials) and remedial measures when lost circulation occurs through the use of lost circulation materials. In this paper the authors present lost circulation zones and causes, potential zones of lost circulation, excessive downhole pressures causes, preventive measures, tools and methods for locating loss zones and determining the severity of loss, lost circulation materials, and recommended treatments.


Author(s):  
Yang Liu ◽  
Tianshou Ma ◽  
Ping Chen ◽  
Bisheng Wu ◽  
Xi Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document