Fault Detection of Planetary Gearboxes Based on an Adaptive Ensemble Empirical Mode Decomposition

Author(s):  
Yaguo Lei ◽  
Naipeng Li ◽  
Jing Lin
Entropy ◽  
2019 ◽  
Vol 21 (7) ◽  
pp. 680 ◽  
Author(s):  
Zhang ◽  
Zhou

This study presents a comprehensive fault diagnosis method for rolling bearings. The method includes two parts: the fault detection and the fault classification. In the stage of fault detection, a threshold based on refined composite multiscale dispersion entropy (RCMDE) at a local maximum scale is defined to judge the health state of rolling bearings. If the bearing is in fault, a generalized multi-scale feature extraction method is developed to fully extract fault information by combining fast ensemble empirical mode decomposition (FEEMD) and RCMDE. Firstly, the fault vibration signals are decomposed into a set of intrinsic mode functions (IMFs) by FEEMD. Secondly, the RCMDE value of multiple IMFs is calculated to generate a candidate feature pool. Then, the maximum-relevance and minimum-redundancy (mRMR) approach is employed to select the sensitive features from the candidate feature pool to construct the final feature vectors, and the final feature vectors are fed into random forest (RF) classifier to identify different fault working conditions. Finally, experiments and comparative research are carried out to verify the performance of the proposed method. The results show that the proposed method can detect faults effectively. Meanwhile, it has a more robust and excellent ability to identify different fault types and severity compared with other conventional approaches.


Generally, two or more faults occur simultaneously in the bearings. These Compound Faults (CF) in bearing, are most difficult type of faults to detect, by any data-driven method including machine learning. Hence, it is a primary requirement to decompose the fault vibration signals logically, so that frequencies can be grouped in parts. Empirical Mode Decomposition (EMD) is one of the simplest techniques of decomposition of signals. In this paper we have used Ensemble Empirical Mode Decomposition (EEMD) technique for compound fault detection/identification. Ensembled Empirical Mode Decomposition is found useful, where a white noise helps to detect the bearing frequencies. The graphs show clearly the capability of EEMD to detect the multiple faults in rolling bearings.


Sign in / Sign up

Export Citation Format

Share Document