Particle Swarm Optimization with Multiple Learning Terms for Storage Location Assignment Problems Considering Three-Axis Traveling Distance

Author(s):  
Warisa Wisittipanich ◽  
Pongsakorn Meesuk
2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Yuyan He ◽  
Aihu Wang ◽  
Hailiang Su ◽  
Mengyao Wang

Outbound container storage location assignment problem (OCSLAP) could be defined as how a series of outbound containers should be stacked in the yard according to certain assignment rules so that the outbound process could be facilitated. Considering the NP-hard nature of OCSLAP, a novel particle swarm optimization (PSO) method is proposed. The contributions of this paper could be outlined as follows: First, a neighborhood-based mutation operator is introduced to enrich the diversity of the population to strengthen the exploitation ability of the proposed algorithm. Second, a mechanism to transform the infeasible solutions into feasible ones through the lowest stack principle is proposed. Then, in the case of trapping into the local solution in the search process, an intermediate disturbance strategy is implemented to quickly jump out of the local solution, thereby enhancing the global search capability. Finally, numerical experiments have been done and the results indicate that the proposed algorithm achieves a better performance in solving OCSLAP.


2020 ◽  
Vol 39 (4) ◽  
pp. 5699-5711
Author(s):  
Shirong Long ◽  
Xuekong Zhao

The smart teaching mode overcomes the shortcomings of traditional teaching online and offline, but there are certain deficiencies in the real-time feature extraction of teachers and students. In view of this, this study uses the particle swarm image recognition and deep learning technology to process the intelligent classroom video teaching image and extracts the classroom task features in real time and sends them to the teacher. In order to overcome the shortcomings of the premature convergence of the standard particle swarm optimization algorithm, an improved strategy for multiple particle swarm optimization algorithms is proposed. In order to improve the premature problem in the search performance algorithm of PSO algorithm, this paper combines the algorithm with the useful attributes of other algorithms to improve the particle diversity in the algorithm, enhance the global search ability of the particle, and achieve effective feature extraction. The research indicates that the method proposed in this paper has certain practical effects and can provide theoretical reference for subsequent related research.


Sign in / Sign up

Export Citation Format

Share Document