Inorganic Nanoparticles for Photodynamic Therapy

Author(s):  
L. Colombeau ◽  
S. Acherar ◽  
F. Baros ◽  
P. Arnoux ◽  
A. Mohd Gazzali ◽  
...  
Author(s):  
Heidi Abrahamse ◽  
Hanieh Montaseri ◽  
Cherie Kruger

The application of porphyrins and their derivatives have been investigated extensively over the past years for phototherapy cancer treatment. Phototherapeutic Porphyrins have the ability to generate high levels of reactive oxygen with a low dark toxicity and these properties have made them robust photosensitizing agents. In recent years, Porphyrins have been combined with various nanomaterials in order to improve their bio-distribution. These combinations allow for nanoparticles to enhance photodynamic therapy (PDT) cancer treatment and adding additional nanotheranostics (photothermal therapy—PTT) as well as enhance photodiagnosis (PDD) to the reaction. This review examines various porphyrin-based inorganic nanoparticles developed for phototherapy nanotheranostic cancer treatment over the last three years (2017 to 2020). Furthermore, current challenges in the development and future perspectives of porphyrin-based nanomedicines for cancer treatment are also highlighted.


Biomedicines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1583
Author(s):  
Kyohei Okubo ◽  
Masakazu Umezawa ◽  
Kohei Soga

Near infrared (NIR) light offers high transparency in biological tissue. Recent advances in NIR fluorophores including organic dyes and lanthanide-doped inorganic nanoparticles have realized the effective use of the NIR optical window for in vivo bioimaging and photodynamic therapy. The narrow energy level intervals used for electronic transition that involves NIR light, however, give rise to a need for guidelines for reducing heat emission in luminescence systems, especially in the development of organic/inorganic hybrid structures. This review presents an approach for employing the polarity and vibrational energy of ions and molecules that surround the luminescence centers for the development of such hybrid nanostructures. Multiphonon relaxation theory, formulated for dealing with heat release in ionic solids, is applied to describe the vibrational energy in organic or molecular systems, referred to as phonon in this review, and we conclude that surrounding the luminescence centers either with ions with low vibrational energy or molecules with small chemical polarity is the key to bright luminescence. NIR photoexcited phosphors and nanostructures in organic/inorganic mixed systems, designed based on the guidelines, for photodynamic therapy are reviewed.


2020 ◽  
Vol 21 (9) ◽  
pp. 3358 ◽  
Author(s):  
Hanieh Montaseri ◽  
Cherie Ann Kruger ◽  
Heidi Abrahamse

The application of porphyrins and their derivatives have been investigated extensively over the past years for phototherapy cancer treatment. Phototherapeutic Porphyrins have the ability to generate high levels of reactive oxygen with a low dark toxicity and these properties have made them robust photosensitizing agents. In recent years, Porphyrins have been combined with various nanomaterials in order to improve their bio-distribution. These combinations allow for nanoparticles to enhance photodynamic therapy (PDT) cancer treatment and adding additional nanotheranostics (photothermal therapy—PTT) as well as enhance photodiagnosis (PDD) to the reaction. This review examines various porphyrin-based inorganic nanoparticles developed for phototherapy nanotheranostic cancer treatment over the last three years (2017 to 2020). Furthermore, current challenges in the development and future perspectives of porphyrin-based nanomedicines for cancer treatment are also highlighted.


2021 ◽  
Author(s):  
LIhong Sun ◽  
Ping Wang ◽  
Jinxia Zhang ◽  
Yang Sun ◽  
Suhui Sun ◽  
...  

As an alternative to photodynamic therapy (PDT), ultrasound-triggered tumor sonodynamic therapy (SDT) has garnered significant attention, owing to its high tissue penetration, few side effects, and reliable patient compliance. A...


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3132
Author(s):  
Thais P. Pivetta ◽  
Caroline E. A. Botteon ◽  
Paulo A. Ribeiro ◽  
Priscyla D. Marcato ◽  
Maria Raposo

Photodynamic therapy (PDT) and photothermal therapy (PTT) are photo-mediated treatments with different mechanisms of action that can be addressed for cancer treatment. Both phototherapies are highly successful and barely or non-invasive types of treatment that have gained attention in the past few years. The death of cancer cells because of the application of these therapies is caused by the formation of reactive oxygen species, that leads to oxidative stress for the case of photodynamic therapy and the generation of heat for the case of photothermal therapies. The advancement of nanotechnology allowed significant benefit to these therapies using nanoparticles, allowing both tuning of the process and an increase of effectiveness. The encapsulation of drugs, development of the most different organic and inorganic nanoparticles as well as the possibility of surfaces’ functionalization are some strategies used to combine phototherapy and nanotechnology, with the aim of an effective treatment with minimal side effects. This article presents an overview on the use of nanostructures in association with phototherapy, in the view of cancer treatment.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 296 ◽  
Author(s):  
Hanieh Montaseri ◽  
Cherie Ann Kruger ◽  
Heidi Abrahamse

Photodynamic therapy (PDT) is an alternative modality to conventional cancer treatment, whereby a specific wavelength of light is applied to a targeted tumor, which has either a photosensitizer or photochemotherapeutic agent localized within it. This light activates the photosensitizer in the presence of molecular oxygen to produce phototoxic species, which in turn obliterate cancer cells. The incidence rate of breast cancer (BC) is regularly growing among women, which are currently being treated with methods, such as chemotherapy, radiotherapy, and surgery. These conventional treatment methods are invasive and often produce unwanted side effects, whereas PDT is more specific and localized method of cancer treatment. The utilization of nanoparticles in PDT has shown great advantages compared to free photosensitizers in terms of solubility, early degradation, and biodistribution, as well as far more effective intercellular penetration and uptake in targeted cancer cells. This review gives an overview of the use of inorganic nanoparticles (NPs), including: gold, magnetic, carbon-based, ceramic, and up-conversion NPs, as well as quantum dots in PDT over the last 10 years (2009 to 2019), with a particular focus on the active targeting strategies for the PDT treatment of BC.


Nanoscale ◽  
2020 ◽  
Vol 12 (14) ◽  
pp. 7875-7887 ◽  
Author(s):  
Ying Lan ◽  
Xiaohui Zhu ◽  
Ming Tang ◽  
Yihan Wu ◽  
Jing Zhang ◽  
...  

A near-infrared (NIR) activated theranostic nanoplatform based on upconversion nanoparticles (UCNPs) is developed in order to overcome the hypoxia-associated resistance in photodynamic therapy by photo-release of NO upon NIR illumination.


2019 ◽  
Vol 10 (45) ◽  
pp. 6116-6121 ◽  
Author(s):  
Tan Ji ◽  
Lei Xia ◽  
Wei Zheng ◽  
Guang-Qiang Yin ◽  
Tao Yue ◽  
...  

We present a new family of porphyrin-functionalized coordination star polymers prepared through combination of coordination-driven self-assembly and post-assembly polymerization. Their self-assembly behaviour in water and potential for photodynamic therapy were demonstrated.


2020 ◽  
Vol 56 (43) ◽  
pp. 5819-5822
Author(s):  
Jing Zheng ◽  
Yongzhuo Liu ◽  
Fengling Song ◽  
Long Jiao ◽  
Yingnan Wu ◽  
...  

In this study, a near-infrared (NIR) theranostic photosensitizer was developed based on a heptamethine aminocyanine dye with a long-lived triplet state.


Sign in / Sign up

Export Citation Format

Share Document