The Finger-Knuckle-Print Recognition Using the Kernel Principal Components Analysis and the Support Vector Machines

Author(s):  
S. Khellat-Kihel ◽  
R. Abrishambaf ◽  
J. Cabral ◽  
J. L. Monteiro ◽  
M. Benyettou
2013 ◽  
Vol 756-759 ◽  
pp. 3590-3595
Author(s):  
Liang Zhang ◽  
Ji Wen Dong

Aiming at solving the problems of occlusion and illumination in face recognition, a new method of face recognition based on Kernel Principal Components Analysis (KPCA) and Collaborative Representation Classifier (CRC) is developed. The KPCA can obtain effective discriminative information and reduce the feature dimensions by extracting faces nonlinear structures features, the decisive factor. Considering the collaboration among the samples, the CRC which synthetically consider the relationship among samples is used. Experimental results demonstrate that the algorithm obtains good recognition rates and also improves the efficiency. The KCRC algorithm can effectively solve the problem of illumination and occlusion in face recognition.


2021 ◽  
Author(s):  
Ahmed AlSaihati ◽  
Salaheldin Elkatatny ◽  
Hani Gamal ◽  
Abdulazeez Abdulraheem

Abstract Mathematical equations, based on conservation of mass and momentum, are used to determine the ECD at different depths in the wellbore. However, such equations do not consider important factors that have a influence on the ECD such as: (i) bottom hole temperature, (ii) pipe rotation and eccentricity, and (iii) wellbore roughness. Thus, discrepancy between the calculated ECDs and actual ones has been reported in the literature. This paper aims to explore how artificial intelligence (AI) and machine learning (ML) could provide real-time accurate prediction of the ECD, to have more insight and management of wellbore downhole conditions. For this purpose, a supervised ML algorithm, support vector machine (SVM), based on principal components analysis (PCA), was developed. Actual field data of Well-1 including drilling surface parameters and ECDs, measured by downhole sensors, were collected to develop a classical SVM model. The dataset was split with an 80/20 training-testing data ratio. Sensitivity analysis with different SVM parameters such as regularization parameter C, gamma, kernel type (linear, radial basis function "RBF") was performed. The performance of the model was assessed in terms of root mean square error (RMSE) and coefficient of determination (R2). Afterward, PCA was applied to the dataset of Well-1 to develop an SVM model using the transformed dataset in PCA space. The performance of the model while using different numbers of principal components was evaluated. The results showed that the classical SVM with the linear kernel predicted the ECD with RMSE of 0.53 and R2 of 0.97 in the training set, while RMSE and R2 were 0.56 and 0.97 respectively in the testing set. The PCA-based SVM model, with the linear kernel and four principal components (93.53% variation of the dataset), predicted the ECD with RMSE 0.79 and R2 of 0.95 in the testing set.


2020 ◽  
Author(s):  
Jiayu Zhou ◽  
Xuwen Wang ◽  
Yanqing Ye ◽  
Jiang Jiang

Abstract Numerous pieces of clinical evidence have shown that many phenotypic traits of human disease are related to their gut microbiome. Through supervised classification, it is feasible to determine the human disease states by revealing the intestinal microbiota compositional information. However, the abundance matrix of microbiome data is so sparse, an interpretable deep model is crucial to further represent and mine the data for expansion, such as the deep forest. What's more, overfitting can still exist in the original deep forest model when dealing with such “large p, small n” biology data. Feature reduction is considered to improve the ensemble forest model especially towards the disease identification in the human microbiota. In this work, we propose the kernel principal components based cascade forest method, so-called KPCCF, to classify the disease states of patients by using taxonomic profiles of the microbiome at the family level. In detail, the kernel principal components analysis method is first used to reduce the original dimension of human microbiota datasets. Besides, the processed data is fed into the cascade forest to preliminarily discriminate the disease state of the samples. Thus, the proposed KPCCF algorithm can represent the small-scale and high-dimension human microbiota datasets with the sparse feature matrix. Systematic comparison experiments demonstrate that our method consistently outperforms the state-of-the-art methods with the comparative study on 4 datasets. Additionally, compared to other dimensionality reduction methods, the kernel principal components analysis method is more suitable for microbiota datasets.


Sign in / Sign up

Export Citation Format

Share Document