Water Quality of Lake Tana Basin, Upper Blue Nile, Ethiopia. A Review of Available Data

Author(s):  
Goraw Goshu ◽  
A. A. Koelmans ◽  
J. J. M. de Klein
2018 ◽  
Vol 1 (3) ◽  
pp. 1-14
Author(s):  
Rasha Babiker Gurashi Abu Sabah ◽  
Abubaker Haroun Mohamed Adam ◽  
Dawoud Mohamed Ali

The objectives of this study were to quantify the fresh water quality of Blue Nile River before processing, identify the pollutants, and to determine the most polluted areas, and their impacts on living organisms as well as the surrounding environment. Thus, random water samples were collected and analyzed at the laboratory of the Ministry of Irrigation and Water Resources, Ground water and Wadis Directorates - Khartoum. The outcomes were compared with the World Health Organization standardization. The results revealed variations in the concentration of the studied elements taken from the different locations. But, the results indicated that the water quality is good, and it is within the permissible water use. However, further study is recommended to include seasonal variation as well as the biological analysis.


Hydrology ◽  
2019 ◽  
Vol 6 (1) ◽  
pp. 21 ◽  
Author(s):  
Bitew G. Tassew ◽  
Mulugeta A. Belete ◽  
K. Miegel

Understanding the complex relationships between rainfall and runoff processes is necessary for the proper estimation of the quantity of runoff generated in a watershed. The surface runoff was simulated using the Hydrologic Modelling System (HEC-HMS) for the Gilgel Abay Catchment (1609 km2), Upper Blue Nile Basin, Ethiopia. The catchment was delineated and its properties were extracted from a 30 m × 30 m Digital Elevation Model (DEM) of the Lake Tana Basin. The meteorological model was developed within HEC-HMS from rainfall data and the control specifications defined the period and time step of the simulation run. To account for the loss, runoff estimation, and flow routing, Soil Conservation Service Curve Number (SCS-CN), Soil Conservation Service Unit Hydrograph (SCS-UH) and Muskingum methods were used respectively. The rainfall-runoff simulation was conducted using six extreme daily time series events. Initial results showed that there is a clear difference between the observed and simulated peak flows and the total volume. Thereafter, a model calibration with an optimization method and sensitivity analysis was carried out. The result of the sensitivity analysis showed that the curve number is the sensitive parameter. In addition, the model validation results showed a reasonable difference in peak flow (Relative Error in peak, REP = 1.49%) and total volume (Relative Error in volume, REV = 2.38%). The comparison of the observed and simulated hydrographs and the model performance (NSE = 0.884) and their correlation (R2 = 0.925) showed that the model is appropriate for hydrological simulations in the Gilgel Abay Catchment.


2016 ◽  
Vol 121 ◽  
pp. 154-167 ◽  
Author(s):  
Fenta Nigate ◽  
Marc Van Camp ◽  
Seifu Kebede ◽  
Kristine Walraevens

2018 ◽  
Vol 212 ◽  
pp. 43-53 ◽  
Author(s):  
Ayele Almaw Fenta ◽  
Hiroshi Yasuda ◽  
Katsuyuki Shimizu ◽  
Yasuomi Ibaraki ◽  
Nigussie Haregeweyn ◽  
...  

2016 ◽  
Vol 9 (2) ◽  
pp. 197
Author(s):  
Abrehet Kahsay Mehari ◽  
Shewit Gebremedhin ◽  
Belayneh Ayele
Keyword(s):  

2020 ◽  
Vol 10 (12) ◽  
Author(s):  
Alemsha Bogale

AbstractLake Tana Basin is located in upper Blue Nile Basin which is comprises a total area of 15,096 km2 of which 3063 km2 is covered by the Lake which is the source of Blue Nile river. Lake Tana Basin and Blue Nile River provide various benefits also for downstream countries. The basin is highly degraded by different natural and manmade problems and it influence both Ethiopia and downstream countries. The main cause of basin degradation is inappropriate LULC. Huge area of cultivated land using without suitable management is the major basin problem. It is due to insure food security coming from unprecedented population growth rate. Forested land has encouraged the infiltration capacity and permeability of the land. It helps to increase the recharge capacity contribute to base flow whereas it is vice versa for cultivated land which is quick overland flow and significant soil erosion have observed. Besides, the soil erosion from agricultural land is the main source of nutrient enters to the lake which is the cause for eutrophication. To combat such problems both up and downstream countries should discuss together and design and implement appropriate basin management strategies to sustain the biodiversity and hydrological system of the basin.


Sign in / Sign up

Export Citation Format

Share Document