Decision Points for Non-determinism in Concurrent Model Synchronization with Triple Graph Grammars

Author(s):  
Frank Trollmann ◽  
Sahin Albayrak
Author(s):  
Marius Lauder ◽  
Anthony Anjorin ◽  
Gergely Varró ◽  
Andy Schürr

Author(s):  
Lars Fritsche ◽  
Jens Kosiol ◽  
Adrian Möller ◽  
Andy Schürr ◽  
Gabriele Taentzer

2013 ◽  
Vol 14 (1) ◽  
pp. 241-269 ◽  
Author(s):  
Frank Hermann ◽  
Hartmut Ehrig ◽  
Fernando Orejas ◽  
Krzysztof Czarnecki ◽  
Zinovy Diskin ◽  
...  

Author(s):  
Lars Fritsche ◽  
Jens Kosiol ◽  
Andy Schürr ◽  
Gabriele Taentzer

Abstract Model synchronization, i.e., the task of restoring consistency between two interrelated models after a model change, is a challenging task. Triple graph grammars (TGGs) specify model consistency by means of rules that describe how to create consistent pairs of models. These rules can be used to automatically derive further rules, which describe how to propagate changes from one model to the other or how to change one model in such a way that propagation is guaranteed to be possible. Restricting model synchronization to these derived rules, however, may lead to unnecessary deletion and recreation of model elements during change propagation. This is inefficient and may cause unnecessary information loss, i.e., when deleted elements contain information that is not represented in the second model, this information cannot be recovered easily. Short-cut rules have recently been developed to avoid unnecessary information loss by reusing existing model elements. In this paper, we show how to automatically derive (short-cut) repair rules from short-cut rules to propagate changes such that information loss is avoided and model synchronization is accelerated. The key ingredients of our rule-based model synchronization process are these repair rules and an incremental pattern matcher informing about suitable applications of them. We prove the termination and the correctness of this synchronization process and discuss its completeness. As a proof of concept, we have implemented this synchronization process in eMoflon, a state-of-the-art model transformation tool with inherent support of bidirectionality. Our evaluation shows that repair processes based on (short-cut) repair rules have considerably decreased information loss and improved performance compared to former model synchronization processes based on TGGs.


Author(s):  
Anthony Anjorin ◽  
Sebastian Rose ◽  
Frederik Deckwerth ◽  
Andy Schürr

Sign in / Sign up

Export Citation Format

Share Document