Dynamic Analysis, Electronic Circuit Realization of Mathieu-Duffing Oscillator and Its Synchronization with Unknown Parameters and External Disturbances

Author(s):  
Victor Kamdoum Tamba ◽  
François Kapche Tagne ◽  
Elie Bertrand Megam Ngouonkadi ◽  
Hilaire Bertrand Fotsin
2018 ◽  
Vol 28 (4) ◽  
pp. 625-634 ◽  
Author(s):  
Jacek Kabziński

Abstract The problem of practical synchronization of an uncertain Duffing oscillator with a higher order chaotic system is considered. Adaptive control techniques are used to obtain chaos synchronization in the presence of unknown parameters and bounded, unstructured, external disturbances. The features of the proposed controllers are compared by solving Duffing-Arneodo and Duffing-Chua synchronization problems.


2021 ◽  
pp. 107754632098794
Author(s):  
Meysam Azhdari ◽  
Tahereh Binazadeh

This article studies the uniformly ultimately bounded output tracking problem of uncertain nonlinear sandwich systems with sandwiched dead-zone nonlinearity in the presence of some practical constraints such as nonsymmetric input saturation, model uncertainties, time-varying external disturbances, and unknown parameters. Due to the existence of both dead-zone and saturation nonlinearities, the design process is more complicated; therefore, to solve the design complexities, the designing process is divided into two phases. The proposed method leads to output tracking with acceptable accuracy. Moreover, all signals in the closed-loop system are ultimately bounded. Simulation results illustrate the applicability and effectiveness of the proposed method by its application on two practical sandwich systems (robotic system and electrohydraulic servo press system).


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Bo Meng ◽  
Xiaohong Wang

Adaptive synchronization for a class of uncertain delayed fractional-order Hopfield neural networks (FOHNNs) with external disturbances is addressed in this paper. For the unknown parameters and external disturbances of the delayed FOHNNs, some adaptive estimations are designed. Firstly, a fractional-order switched sliding surface is proposed for the delayed FOHNNs. Then, according to the fractional-order extension of the Lyapunov stability criterion, a fractional-order sliding mode controller is constructed to guarantee that the synchronization error of the two uncertain delayed FOHNNs converges to an arbitrary small region of the origin. Finally, a numerical example of two-dimensional uncertain delayed FOHNNs is given to verify the effectiveness of the proposed method.


2021 ◽  
pp. 248-252
Author(s):  
Aliya Imangazieva

A novel robust control law is investigated on the problem of ship stabilization on the trajectory, which allows one to compensate perturbations in the parameters of the mathematical model of ship dynamics in cases of their changes caused by external conditions, namely: sea waves, currents, wind gusts, etc. To implement the proposed control law, only measured adjustable values are required such as the yaw angle and the control action that is the angle of the rudder of the ship. The synthesized ship course control system was investigated in MATLAB. The law of controlling the ship’s course with unknown parameters and external disturbances in the power supply is proposed. The design of the control law is based on a robust auxiliary loop algorithm and Khalil observers. The simulations illustrate the efficiency of the proposed control law.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Changhui Wang ◽  
Mei Liang ◽  
Yongsheng Chai

This paper develops a fractional-order adaptive fuzzy backstepping control scheme for incommensurate fractional-order nonlinear uncertain systems with external disturbances and input saturation. Based on backstepping algorithm, the fuzzy logic system is used to approximate the unknown nonlinear uncertainties in each step of the backstepping, and the fractional-order parameters update laws for fuzzy logic system, unknown parameters, and the external disturbances are proposed. With the aids of the frequency distributed model of fractional integrator for the fractional-order systems in the procedure of controller design, the stability of the closed-loop system is established. To verify the effectiveness and robustness of the proposed controller, two simulation examples are demonstrated at last.


Sign in / Sign up

Export Citation Format

Share Document