Calculation Models of Bearing Capacity and Deformation of Soil Foundations with Vertical Elements Reinforced Under Regime Cyclic Loading

Author(s):  
Ilizar Mirsayapov ◽  
Irina Koroleva
2011 ◽  
Vol 250-253 ◽  
pp. 1774-1780
Author(s):  
Zuo Zhou Zhao ◽  
Qin Zhi Liu ◽  
Jia Ru Qian

Steel braces are widely used in seismic retrofit of buildings. However, their tendency of buckling under compression impairs their efficacy. In this paper, characteristics of a cross bracing with rigid intersection, including its bearing capacity, hysteretic property and fracture ductility are investigated. With the analysis results, performance-based design requirements of a steel cross bracing are proposed based on its width-thickness ratio and effective slenderness ratio.


2020 ◽  
Vol 12 (12) ◽  
pp. 4843
Author(s):  
Andrzej Głuchowski ◽  
Katarzyna Gabryś ◽  
Emil Soból ◽  
Raimondas Šadzevičius ◽  
Wojciech Sas

The construction of a roads network consumes high amounts of materials. The road materials are required to fulfill high standards like bearing capacity and low settlement susceptibility due to cyclic loading. Therefore, crushed aggregates are the primary subbase construction material. The material-intensity of road engineering leads to depletion of natural resources, and to avoid it, the alternative recycled materials are required to be applied to achieve sustainable development. The anthropogenic soils (AS), which are defined as man-made unbound aggregates, are the response to these requirements. For the successful application of the AS, a series of geotechnical laboratory and field tests were conducted. In this article, we present the set of 58 test results, including California Bearing Ratio (CBR) bearing capacity tests, oedometric tests, and cyclic CBR tests, to characterize the behavior of three AS types and to compare its reaction with natural aggregate (NA). The AS tested in this study are recycled concrete aggregate (RCA), fly ash and bottom ash mix (BS), and blast furnace slag (BFS). The results of the tests show that the AS has similar characteristics to NA, and in some cases, like compression characteristic, RCA and BFS behave a stiffer response to cyclic loading. The test results and analysis presented here extend the knowledge about AS compressibility and AS response to cyclic loading.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Qiang Zhou ◽  
Lingyu Yang ◽  
Wenyang Zhao

Masonry structures are widely used in developing countries due to their low cost and simple construction, especially in remote areas, where there are a large number of houses without seismic measures. These buildings are prone to collapse and cause a lot of casualties, even under the action of small earthquakes. For the reinforcement of this structure, a cheap, effective, and easy-to-construct reinforcement method is urgently needed. Therefore, this article studies the reinforcement method of polypropylene bands (PP-bands). We have carried out low-frequency cyclic loading tests for two PP-band reinforced masonry walls and two compared masonry walls. We mainly studied the influence of PP-band and different compressive strengths of plastering mortar on the masonry wall’s seismic capacity. The seismic indicators mainly studied in this article include ultimate bearing capacity, energy dissipation capacity, stiffness degradation, and hysteresis characteristics. The experimental results show that the PP-band can greatly enhance the seismic capacity of the masonry wall. The ultimate bearing capacity, energy dissipation capacity, and displacement ductility of the PP-band reinforced wall are increased by 38%–48%, 22%–47%, and 138%–226%.


2019 ◽  
Vol 9 (7) ◽  
pp. 1456 ◽  
Author(s):  
Wenwei Yang ◽  
Ruhao Yan ◽  
Yaqi Suo ◽  
Guoqing Zhang ◽  
Bo Huang

Due to the insufficient radial stiffness of the steel tube, the cracking of the weld and the plastic deformation of the string often occur under the cyclic loading of the hollow section pipe joint. In order to avoid such a failure, the overlapped K-joints were strengthened by pouring different concrete into the chords. Furthermore, to explore the detailed effect of filling different concrete in a chord on the hysteretic behavior of the overlapped K-joints, six full-scale specimens were fabricated by two forms, which included the circular chord and braces, the square chord and circular braces, and the low cyclic loading tests, which were carried out. The failure modes, hysteretic curves and skeleton curves of the joints were obtained, and the bearing capacity, ductility and energy dissipation of the joints were evaluated quantitatively. The results showed that plastic failure occurs on the surface of the chord of the joints without filling concrete, while the failure mode of the joints filled with concrete in the chords was the tensile failure of the chords at the weld of the brace toe, and the compressive braces had a certain buckling deformation; The strengthening measures of concrete filled with chord can effectively improve the mechanical properties of the K-joints, the delay of the plastic deformation of the chord, and improve the bearing capacity of the K-joints. Contrarily, the ductility coefficient and the energy dissipation ratio of K-joints decreased with the concrete filled in the chord. The hysteretic behavior of the K-joints with a circular chord and brace was slightly better than that of the K-joints with a square chord and circular brace, and the hysteretic behavior of the K-joints strengthened with fly ash concrete, which was better than that of the K-joints strengthened with ordinary concrete. The results of ANSYS (a large general finite element analysis software developed by ANSYS Company in the United States) analysis agreed well with the experimental results.


2017 ◽  
Vol 12 (4) ◽  
pp. 611-626 ◽  
Author(s):  
Benjiao Zhang ◽  
Can Mei ◽  
Bin Huang ◽  
Xudong Fu ◽  
Gang Luo ◽  
...  

2021 ◽  
Vol 684 (1) ◽  
pp. 012023
Author(s):  
D. R. Panique Lazcano ◽  
R.Galindo Aires ◽  
C. Olalla Maraón

Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1149 ◽  
Author(s):  
Giovanni Anglani ◽  
Jean-Marc Tulliani ◽  
Paola Antonaci

Capsule-based self-healing is increasingly being targeted as an effective way to improve the durability and sustainability of concrete infrastructures through the extension of their service life. Assessing the mechanical and durability behaviour of self-healing materials after damage and subsequent autonomous repair is essential to validate their possible use in real structures. In this study, self-healing mortars containing cementitious tubular capsules with a polyurethanic repairing agent were experimentally investigated. Their mechanical behaviour under both static and cyclic loading was analysed as a function of some factors related to the capsules themselves (production method, waterproof coating configuration, volume of repairing agent stored) or to the specimens (number, size and distribution of the capsules in the specimen). Their mechanical performances were quantified in terms of recovery of load-bearing capacity under static conditions and number of cycles to failure as a function of the peak force under cyclic conditions. Positive results were achieved, with a maximum load recovery index up to more than 40% and number of cycles to failure exceeding 10,000 in most cases, with peak force applied during cyclic loading at least corresponding to 70% of the estimated load-bearing capacity of the healed samples.


2016 ◽  
pp. 423-427 ◽  
Author(s):  
Ilizar Mirsayapov ◽  
Marat Shakirov

Sign in / Sign up

Export Citation Format

Share Document