Modeling the Cognitive Task Load and Performance of Naval Operators

Author(s):  
Mark A. Neerincx ◽  
Stefan Kennedie ◽  
Marc Grootjen ◽  
Franc Grootjen
2016 ◽  
Vol 55 ◽  
pp. 642-652 ◽  
Author(s):  
Iris Cohen ◽  
Nadia den Braber ◽  
Nanja J.J.M. Smets ◽  
Jurriaan van Diggelen ◽  
Willem-Paul Brinkman ◽  
...  

2020 ◽  
Vol 10 (5) ◽  
pp. 92
Author(s):  
Ramtin Zargari Marandi ◽  
Camilla Ann Fjelsted ◽  
Iris Hrustanovic ◽  
Rikke Dan Olesen ◽  
Parisa Gazerani

The affective dimension of pain contributes to pain perception. Cognitive load may influence pain-related feelings. Eye tracking has proven useful for detecting cognitive load effects objectively by using relevant eye movement characteristics. In this study, we investigated whether eye movement characteristics differ in response to pain-related feelings in the presence of low and high cognitive loads. A set of validated, control, and pain-related sounds were applied to provoke pain-related feelings. Twelve healthy young participants (six females) performed a cognitive task at two load levels, once with the control and once with pain-related sounds in a randomized order. During the tasks, eye movements and task performance were recorded. Afterwards, the participants were asked to fill out questionnaires on their pain perception in response to the applied cognitive loads. Our findings indicate that an increased cognitive load was associated with a decreased saccade peak velocity, saccade frequency, and fixation frequency, as well as an increased fixation duration and pupil dilation range. Among the oculometrics, pain-related feelings were reflected only in the pupillary responses to a low cognitive load. The performance and perceived cognitive load decreased and increased, respectively, with the task load level and were not influenced by the pain-related sounds. Pain-related feelings were lower when performing the task compared with when no task was being performed in an independent group of participants. This might be due to the cognitive engagement during the task. This study demonstrated that cognitive processing could moderate the feelings associated with pain perception.


Open Heart ◽  
2020 ◽  
Vol 7 (2) ◽  
pp. e001260
Author(s):  
Kalaivani Mahadevan ◽  
Elena Cowan ◽  
Navneet Kalsi ◽  
Helena Bolam ◽  
Richard Arnett ◽  
...  

ObjectiveTo understand human factors (HF) contributing to disturbances during invasive cardiac procedures, including frequency and nature of distractions, and assessment of operator workload.MethodsSingle centre prospective observational evaluation of 194 cardiac procedures in three adult cardiac catheterisation laboratories over 6 weeks. A proforma including frequency, nature, magnitude and level of procedural risk at the time of each distraction/interruption was completed for each case. The primary operator completed a National Aeronautical and Space Administration (NASA) task load questionnaire rating mental/physical effort, level of frustration, time-urgency, and overall effort and performance.Results264 distractions occurred in 106 (55%) out of 194 procedures observed; 80% were not relevant to the case being undertaken; 14% were urgent including discussions of potential ST-elevation myocardial infarction requiring emergency angioplasty. In procedures where distractions were observed, frequency per case ranged from 1 to 16 (mean 2.5, SD ±2.2); 43 were documented during high-risk stages of the procedure. Operator rating of NASA task load parameters demonstrated higher levels of mental and physical workload and effort during cases in which distractions occurred.ConclusionsIn this first description of HF in adult cardiac catheter laboratories, we found that fewer than half of all procedures were completed without interruption/distraction. The majority were unnecessary and without relation to the case or list. We propose the introduction of a ‘sterile cockpit’ environment within catheter laboratories, as adapted from aviation and used in surgical operating theatres, to minimise non-emergent interruptions and disturbances, to improve operator conditions and overall patient safety.


2010 ◽  
Vol 481 (3) ◽  
pp. 173-177 ◽  
Author(s):  
Ting Ting Yeh ◽  
Jason Boulet ◽  
Tyler Cluff ◽  
Ramesh Balasubramaniam

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Irina Chamine ◽  
Barry S. Oken

Objective. Stress-reducing therapies help maintain cognitive performance during stress. Aromatherapy is popular for stress reduction, but its effectiveness and mechanism are unclear. This study examined stress-reducing effects of aromatherapy on cognitive function using the go/no-go (GNG) task performance and event related potentials (ERP) components sensitive to stress. The study also assessed the importance of expectancy in aromatherapy actions.Methods. 81 adults were randomized to 3 aroma groups (active experimental, detectable, and undetectable placebo) and 2 prime subgroups (prime suggesting stress-reducing aroma effects or no-prime). GNG performance, ERPs, subjective expected aroma effects, and stress ratings were assessed at baseline and poststress.Results. No specific aroma effects on stress or cognition were observed. However, regardless of experienced aroma, people receiving a prime displayed faster poststress median reaction times than those receiving no prime. A significant interaction for N200 amplitude indicated divergent ERP patterns between baseline and poststress for go and no-go stimuli depending on the prime subgroup. Furthermore, trends for beneficial prime effects were shown on poststress no-go N200/P300 latencies and N200 amplitude.Conclusion. While there were no aroma-specific effects on stress or cognition, these results highlight the role of expectancy for poststress response inhibition and attention.


2017 ◽  
Vol 5 (1) ◽  
pp. 148-159 ◽  
Author(s):  
Louisa D. Raisbeck ◽  
Jed A. Diekfuss

Performance benefits exist for an external focus of attention compared with an internal focus of attention for performance and learning (Wulf, 2013). It is unknown, however, if varying the number of verbal cues affects learning and performance. Focus of attention and the number of verbal cues were manipulated during a simulated handgun-shooting task. For the internal focus conditions, participants were told to focus on their hand, arm, and wrist, whereas the external focus instructions were to focus on the gun, gun barrel, and gun stock. To manipulate the number of verbal cues, participants received instruction to focus on a single verbal cue or multiple verbal cues. Shooting performance was assessed at baseline, acquisition, and at two separate retention phases (immediate, delayed) that included transfer tests. Participants completed the NASA—Task Load Index to assess workload following all trials. Participants who received one verbal cue performed significantly better during immediate retention than those who received three verbal cues. Participants who used external focus of attention instructions had higher performance and reported less workload at delayed retention compared to those who used internal focus instructions. This research provides further support for the benefits of an external focus and highlights the importance of minimizing the number of verbal cues.


2018 ◽  
Vol 21 ◽  
Author(s):  
Leandro da Silva-Sauer ◽  
Luis Valero-Aguayo ◽  
Francisco Velasco-Álvarez ◽  
Álvaro Fernández-Rodríguez ◽  
Ricardo Ron-Angevin

AbstractThis study aimed to propose an adapted feedback using a psychological learning technique based on Skinner’s shaping method to help the users to modulate two cognitive tasks (right-hand motor imagination and relaxed state) and improve better control in a Brain-Computer Interface. In the first experiment, a comparative study between performance in standard feedback (N = 9) and shaping method (N = 10) was conducted. The NASA Task Load Index questionnaire was applied to measure the user’s workload. In the second experiment, a single case study was performed (N = 5) to verify the continuous learning by the shaping method. The first experiment showed significant interaction effect between sessions and group (F(1, 17) = 5.565; p = .031) which the shaping paradigm was applied. A second interaction effect demonstrates a higher performance increase in the relax state task with shaping procedure (F(1, 17) = 5. 038; p = .038). In NASA-TXL an interaction effect was obtained between the group and the cognitive task in Mental Demand (F(1, 17) = 6, 809; p = .018), Performance (F(1, 17) = 5, 725; p = .029), and Frustration (F(1, 17) = 9, 735; p = .006), no significance was found in Effort. In the second experiment, a trial-by-trial analysis shows an ascendant trend learning curve for the cognitive task with the lowest initial acquisition (relax state). The results suggest the effectiveness of the shaping procedure to modulate brain rhythms, improving mainly the cognitive task with greater initial difficulty and provide better interaction perception.


2021 ◽  
Author(s):  
Andrew Novak

This thesis presents a taxonomy of expert elevator and amusement device inspector knowledge that was developed using task and cognitive task analysis. While literature concerning research into quality control inspection exists, very little research has been performed into safety inspection. A qualitative study captured the knowledge used by elevator and amusement device inspection. The existence of expert performance in the elevator and amusement device inspection domains was identified and a taxonomy of expert inspector knowledge was created. This taxonomy was based on a model of knowledge that distinguishes between three types of knowledge - declarative, procedural, and strategic. Further development of this taxonomy, along with an effort to perform expert inspector knowledge capture, is expected to lead to improved inspector training and performance, and an increase in consistency between the inspections performed by all inspectors.


Author(s):  
Wim van Winsum

Objective: The independent effects of cognitive and visual load on visual Detection Response Task (vDRT) reaction times were studied in a driving simulator by performing a backwards counting task and a simple driving task that required continuous focused visual attention to the forward view of the road. The study aimed to unravel the attentional processes underlying the Detection Response Task effects. Background: The claim of previous studies that performance degradation on the vDRT is due to a general interference instead of visual tunneling was challenged in this experiment. Method: vDRT stimulus eccentricity and stimulus conspicuity were applied as within-subject factors. Results: Increased cognitive load and visual load both resulted in increased response times (RTs) on the vDRT. Cognitive load increased RT but revealed no task by stimulus eccentricity interaction. However, effects of visual load on RT showed a strong task by stimulus eccentricity interaction under conditions of low stimulus conspicuity. Also, more experienced drivers performed better on the vDRT while driving. Conclusion: This was seen as evidence for a differential effect of cognitive and visual workload. The results supported the tunnel vision model for visual workload, where the sensitivity of the peripheral visual field reduced as a function of visual load. However, the results supported the general interference model for cognitive workload. Application: This has implications for the diagnosticity of the vDRT: The pattern of results differentiated between visual task load and cognitive task load. It also has implications for theory development and workload measurement for different types of tasks.


Sign in / Sign up

Export Citation Format

Share Document