Categorizing User Interests in Recommender Systems

Author(s):  
Sourav Saha ◽  
Sandipan Majumder ◽  
Sanjog Ray ◽  
Ambuj Mahanti
2014 ◽  
Vol 543-547 ◽  
pp. 1856-1859
Author(s):  
Xiang Cui ◽  
Gui Sheng Yin

Recommender systems have been proven to be valuable means for Web online users to cope with the information overload and have become one of the most powerful and popular tools in electronic commerce. We need a method to solve such as what items to buy, what music to listen, or what news to read. The diversification of user interests and untruthfulness of rating data are the important problems of recommendation. In this article, we propose to use two phase recommendation based on user interest and trust ratings that have been given by actors to items. In the paper, we deal with the uncertain user interests by clustering firstly. In the algorithm, we compute the between-class entropy of any two clusters and get the stable classes. Secondly, we construct trust based social networks, and work out the trust scoring, in the class. At last, we provide some evaluation of the algorithms and propose the more improve ideas in the future.


2016 ◽  
Vol 2 ◽  
pp. e63 ◽  
Author(s):  
Nirmal Jonnalagedda ◽  
Susan Gauch ◽  
Kevin Labille ◽  
Sultan Alfarhood

Online news reading has become a widely popular way to read news articles from news sources around the globe. With the enormous amount of news articles available, users are easily overwhelmed by information of little interest to them. News recommender systems help users manage this flood by recommending articles based on user interests rather than presenting articles in order of their occurrence. We present our research on developing personalized news recommendation system with the help of a popular micro-blogging service, “Twitter.” News articles are ranked based on the popularity of the article identified from Twitter’s public timeline. In addition, users construct profiles based on their interests and news articles are also ranked based on their match to the user profile. By integrating these two approaches, we present a hybrid news recommendation model that recommends interesting news articles to the user based on their popularity as well as their relevance to the user profile.


Author(s):  
Bahareh Shadi Shams Zamenjani

t— the influence of social networks among people and at the same time inevitable spread of commercial use of them. Accordingly, in order to sell products, recommender systems designed based on user behavior on social networks, providing a variety of commercial offers tailored to the user. The accuracy of recommender systems that make recommendations to users, and how many of the proposals are accepted by the users is important. In this paper, a recommender system is designed based on user behavior in social network Facebook in two acts and suggests that users purchase their favorite products. The first step is to examine user behavior based on user interests will be given an offer to buy products. In the second stage recommender system uses data mining techniques and suggestions to the user that is associated with their previous purchases. This is real data and the real results of it and it is valid, as well as the results show a high level of accuracy recommender system is designed to offer suggestions to users.


Information ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 317 ◽  
Author(s):  
Mehdi Srifi ◽  
Ahmed Oussous ◽  
Ayoub Ait Lahcen ◽  
Salma Mouline

In e-commerce websites and related micro-blogs, users supply online reviews expressing their preferences regarding various items. Such reviews are typically in the textual comments form, and account for a valuable information source about user interests. Recently, several works have used review texts and their related rich information like review words, review topics and review sentiments, for improving the rating-based collaborative filtering recommender systems. These works vary from one another on how they exploit the review texts for deriving user interests. This paper provides a detailed survey of recent works that integrate review texts and also discusses how these review texts are exploited for addressing some main issues of standard collaborative filtering algorithms.


2020 ◽  
Vol 34 (04) ◽  
pp. 5045-5052 ◽  
Author(s):  
Chen Ma ◽  
Liheng Ma ◽  
Yingxue Zhang ◽  
Jianing Sun ◽  
Xue Liu ◽  
...  

The chronological order of user-item interactions can reveal time-evolving and sequential user behaviors in many recommender systems. The items that users will interact with may depend on the items accessed in the past. However, the substantial increase of users and items makes sequential recommender systems still face non-trivial challenges: (1) the hardness of modeling the short-term user interests; (2) the difficulty of capturing the long-term user interests; (3) the effective modeling of item co-occurrence patterns. To tackle these challenges, we propose a memory augmented graph neural network (MA-GNN) to capture both the long- and short-term user interests. Specifically, we apply a graph neural network to model the item contextual information within a short-term period and utilize a shared memory network to capture the long-range dependencies between items. In addition to the modeling of user interests, we employ a bilinear function to capture the co-occurrence patterns of related items. We extensively evaluate our model on five real-world datasets, comparing with several state-of-the-art methods and using a variety of performance metrics. The experimental results demonstrate the effectiveness of our model for the task of Top-K sequential recommendation.


2019 ◽  
Vol 37 (5) ◽  
Author(s):  
Bilal Hawashin ◽  
Mohammad Lafi ◽  
Tarek Kanan ◽  
Ayman Mansour

2020 ◽  
Vol 13 (2) ◽  
pp. 240-247 ◽  
Author(s):  
Bilal Hawashin ◽  
Darah Aqel ◽  
Shadi Alzubi ◽  
Mohammad Elbes

Background: Recommender Systems use user interests to provide more accurate recommendations according to user actual interests and behavior. Methods: This work aims at improving recommender systems by discovering hidden user interests from the existing interests. User interest expansion would contribute in improving the accuracy of recommender systems by finding more user interests using the given ones. Two methods are proposed to perform the expansion: Expanding interests using correlated interests’ extractor and Expanding interests using word embeddings. Results: Experimental work shows that such expanding is efficient in terms of accuracy and execution time. Conclusion: Therefore, expanding user interests proved to be a promising step in the improvement of the recommender systems performance.


Sign in / Sign up

Export Citation Format

Share Document