Determination of the Masses of the Moon and Venus, and the Astronomical Unit from the Radio Tracking of Mariner II

Author(s):  
John D. Anderson ◽  
Michael R. Warner

The author was desired by the Board of Longitude to examine the discordancies between the right ascensions of the sun, as observed at Greenwich, since the erection of the new transit instrument, and as computed by the solar tables of Delambre, which are used in the computation of the Nautical Almanac; with a view to the discovery of the errors in the elements of those tables. The number of observations from which this comparison was made is 1212, and they extend, with an interruption of only three months, from the end of July 1816 to the end of the year 1826. The result of the comparison at first indicated the necessity of a correction of the epochs of the sun’s longitude, and of the longitude of the perigee, and perhaps also of the equation of the centre. But upon pursuing the examination through a series of years, it became manifest that some other source of irregularity existed, and that this could be no other than an erroneous estimate of the masses of some of the planets, especially of Venus and of Mars. A more critical examination showed, that there was also an error in the assigned mass of the moon. The author proceeds to state the process by which he arrived at the determination of the amount of these several corrections. It was found necessary in these investigations to take into account an error which occurred in the tables with regard to the secular motion. It results from his researches, that the epochs for 1816 and those for 1821 to 25 ought to be increased respectively by 4"·734 and 5"·061; that of the perigee increased by 46"·3, and the greatest equation of the centre diminished by 0"·84. The mass of Venus should be reduced in the proportion nearly of 9 to 8, and that of Mars nearly in the proportion of 22 to 15. On a comparison of these results with those which have been derived from an examination of some of Dr. Maskelyne’s observations, as given by Burkhardt in the Connaissance des Tems for 1816, they are found on the whole to agree in the most satisfactory manner. The principal discordance occurs in the correction of the place of the perigee; a discordance which the author thinks may arise either from want of correctness in the calculation of the term in the motion of the perigee, depending on the square of the time, or, what is more probable, from some undiscovered inequality in the formula, which is a function of the sun’s mean longitude.


1965 ◽  
Vol 21 ◽  
pp. 153-175
Author(s):  
D. O. Muhleman

This paper is devoted to an exact discussion of the determination of the astronomical unit with radar and to an extensive error analysis of the technique. Theoretical relationships between the constants are used to construct a consistent set of numerical values of constants based on these results.


1967 ◽  
Vol 20 (03) ◽  
pp. 281-285
Author(s):  
H. C. Freiesleben

It has recently been suggested that 24-hour satellites might be used as navigational aids. To what category of position determination aids should these be assigned ? Is a satellite of this kind as it were a landmark, because, at least in theory, it remains fixed over the same point on the Earth's surface, in which case it should be classified under land-based navigation aids ? Is it a celestial body, although only one tenth as far from the Earth as the Moon ? If so, it is an astronomical navigation aid. Or is it a radio aid ? After all, its use for position determination depends on radio waves. In this paper I shall favour this last view. For automation is most feasible when an object of observation can be manipulated. This is easiest with radio aids, but it is, of course, impossible with natural stars.At present artificial satellites have the advantage over all other radio aids of world-wide coverage.


2002 ◽  
Vol 11 (02) ◽  
pp. 83-104 ◽  
Author(s):  
GUILHERME F. MARRANGHELLO ◽  
CESAR A. Z. VASCONCELLOS ◽  
MANFRED DILLIG ◽  
J. A. DE FREITAS PACHECO

Thermodynamical properties of nuclear matter are studied in the framework of an effective many-body field theory at finite temperature, considering the Sommerfeld approximation. We perform the calculations by using the nonlinear Boguta and Bodmer model, extended by the inclusion of the fundamental baryon octet and leptonic degrees of freedom. Trapped neutrinos are also included in order to describe protoneutron star properties through the integration of the Tolman–Oppenheimer–Volkoff equations, from which we obtain, beyond the standard relations for the masses and radii of protoneutron stars as functions of the central density, new results of these quantities as functions of temperature. Our predictions include: the determination of an absolute value for the limiting mass of protoneutron stars; new structural aspects on the nuclear matter phase transition via the behavior of the specific heat and, through the inclusion of quark degrees of freedom, the properties of a hadron-quark phase transition and hybrid protoneutron stars


2009 ◽  
Vol 5 (S260) ◽  
pp. 514-521
Author(s):  
Ilias M. Fernini

AbstractThe Islamic society has great ties to astronomy. Its main religious customs (start of the Islamic month, direction of prayer, and the five daily prayers) are all related to two main celestial objects: the Sun and the Moon. First, the start of any Islamic month is related to the actual seeing of the young crescent after the new Moon. Second, the direction of prayer, i.e., praying towards Mecca, is related to the determination of the zenith point in Mecca. Third, the proper time for the five daily prayers is related to the motion of the Sun. Everyone in the society is directly concerned by these customs. This is to say that the major impetus for the growth of Islamic astronomy came from these three main religious observances which presented an assortment of problems in mathematical astronomy. To observe these three customs, a new set of astronomical observations were needed and this helped the development of the Islamic observatory. There is a claim that it was first in Islam that the astronomical observatory came into real existence. The Islamic observatory was a product of needs and values interwoven into the Islamic society and culture. It is also considered as a true representative and an integral par of the Islamic civilisation. Since astronomy interested not only men of science, but also the rulers of the Islamic empire, several observatories have flourished. The observatories of Baghdad, Cairo, Córdoba, Toledo, Maragha, Samarqand and Istanbul acquired a worldwide reputation throughout the centuries. This paper will discuss the two most important observatories (Maragha and Samarqand) in terms of their instruments and discoveries that contributed to the establishment of these scientific institutions.


2018 ◽  
Vol 618 ◽  
pp. A116 ◽  
Author(s):  
J. Prieto-Arranz ◽  
E. Palle ◽  
D. Gandolfi ◽  
O. Barragán ◽  
E. W. Guenther ◽  
...  

Context. Multiplanet systems are excellent laboratories to test planet formation models as all planets are formed under the same initial conditions. In this context, systems transiting bright stars can play a key role, since planetary masses, radii, and bulk densities can be measured. Aims. GJ 9827 (K2-135) has recently been found to host a tightly packed system consisting of three transiting small planets whose orbital periods of 1.2, 3.6, and 6.2 days are near the 1:3:5 ratio. GJ 9827 hosts the nearest planetary system (~30 pc) detected by NASA’s Kepler or K2 space mission. Its brightness (V = 10.35 mag) makes the star an ideal target for detailed studies of the properties of its planets. Methods. Combining the K2 photometry with high-precision radial-velocity measurements gathered with the FIES, HARPS, and HARPS-N spectrographs we revised the system parameters and derive the masses of the three planets. Results. We find that GJ 9827 b has a mass of Mb = 3.69−0.46+0.48 M⊕ and a radius of Rb = 1.58−0.13+0.14 R⊕, yielding a mean density of ρb = 5.11−1.27+1.74 g cm−3. GJ 9827 c has a mass of Mc = 1.45−0.57+0.58 M⊕, radius of Rc = 1.24−0.11+0.11 R⊕, and a mean density of ρc = 4.13−1.77+2.31 g cm−3. For GJ 9827 d, we derive Md = 1.45−0.57+0.58 M⊕, Rd = 1.24−0.11+0.11 R⊕, and ρd = 1.51−0.53+0.71 g cm−3. Conclusions. GJ 9827 is one of the few known transiting planetary systems for which the masses of all planets have been determined with a precision better than 30%. This system is particularly interesting because all three planets are close to the limit between super-Earths and sub-Neptunes. The planetary bulk compositions are compatible with a scenario where all three planets formed with similar core and atmosphere compositions, and we speculate that while GJ 9827 b and GJ 9827 c lost their atmospheric envelopes, GJ 9827 d maintained its primordial atmosphere, owing to the much lower stellarirradiation. This makes GJ 9827 one of the very few systems where the dynamical evolution and the atmosphericescape can be studied in detail for all planets, helping us to understand how compact systems form and evolve.


Nature ◽  
1966 ◽  
Vol 212 (5059) ◽  
pp. 271-271 ◽  
Author(s):  
C. L. GOUDAS ◽  
Z. KOPAL ◽  
Z. KOPAL
Keyword(s):  

2013 ◽  
Vol 40 (1) ◽  
pp. 135-146
Author(s):  
Aleksandar Tomic

Newton's formula for gravity force gives greather force intensity for atraction of the Moon by the Sun than atraction by the Earth. However, central body in lunar (primary) orbit is the Earth. So appeared paradox which were ignored from competent specialist, because the most important problem, determination of lunar orbit, was inmediately solved sufficiently by mathematical ingeniosity - introducing the Sun as dominant body in the three body system by Delaunay, 1860. On this way the lunar orbit paradox were not canceled. Vujicic made a owerview of principles of mechanics in year 1998, in critical consideration. As an example for application of corrected procedure he was obtained gravity law in some different form, which gave possibility to cancel paradox of lunar orbit. The formula of Vujicic, with our small adaptation, content two type of acceleration - related to inertial mass and related to gravity mass. So appears carried information on the origin of the Moon, and paradox cancels.


2020 ◽  
Vol 27 ◽  
pp. 106
Author(s):  
Sotirios Chasapoglou ◽  
A. Tsantiri ◽  
A. Kalamara ◽  
M. Kokkoris ◽  
V. Michalopoulou ◽  
...  

The accurate knowledge of neutron-induced fission cross sections in actinides, is of great importance when it comes to the design of fast nuclear reactors, as well as accelerator driven systems. Specifically for the 232Th(n,f) case, the existing experimental datasets are quite discrepant in both the low and high energy MeV regions, thus leading to poor evaluations, a fact that in turn implies the need for more accurate measurements.In the present work, the total cross section of the 232Th(n,f) reaction has been measured relative to the 235U(n,f) and 238U(n,f) ones, at incident energies of 7.2, 8.4, 9.9 MeV and 14.8, 16.5, 17.8 MeV utilizing the 2H(d,n) and 3H(d,n) reactions respectively, which generally yield quasi-monoenergetic neutron beams. The experiments were performed at the 5.5 MV Tandem accelerator laboratory of N.C.S.R. “Demokritos”, using a Micromegas detector assembly and an ultra thin ThO2 target, especially prepared for fission measurements at n_ToF, CERN during its first phase of operations, using the painting technique. The masses of all actinide samples were determined via α-spectroscopy. The produced fission yields along with the results obtained from activation foils were studied in parallel, using both the NeusDesc [1] and MCNP5 [2] codes, taking into consideration competing nuclear reactions (e.g. deuteron break up), along with neutron elastic and inelastic scattering with the beam line, detector housing and experimental hall materials. Since the 232Th(n,f) reaction has a relatively low energy threshold and can thus be affected by parasitic neutrons originating from a variety of sources, the thorough characterization of the neutron flux impinging on the targets is a prerequisite for accurate cross-section measurements, especially in the absence of time-of-flight capabilities. Additional Monte-Carlo simulations were also performed coupling both GEF [3] and FLUKA [4] codes for the determination of the detection efficiency.


Sign in / Sign up

Export Citation Format

Share Document