Simulation of the Dynamics of Polymers in Solution via a Hybrid Molecular Dynamics-Lattice Boltzmann Scheme

Author(s):  
B. Dünweg ◽  
P. Ahlrichs ◽  
R. Everaers
Author(s):  
Sauro Succi

This chapter provides a bird’s eye view of the main numerical particle methods used in the kinetic theory of fluids, the main purpose being of locating Lattice Boltzmann in the broader context of computational kinetic theory. The leading numerical methods for dense and rarified fluids are Molecular Dynamics (MD) and Direct Simulation Monte Carlo (DSMC), respectively. These methods date of the mid 50s and 60s, respectively, and, ever since, they have undergone a series of impressive developments and refinements which have turned them in major tools of investigation, discovery and design. However, they are both very demanding on computational grounds, which motivates a ceaseless demand for new and improved variants aimed at enhancing their computational efficiency without losing physical fidelity and vice versa, enhance their physical fidelity without compromising computational viability.


Soft Matter ◽  
2021 ◽  
Author(s):  
Miru Lee ◽  
Christoph Lohrmann ◽  
Kai Szuttor ◽  
Harold Auradou ◽  
Christian Holm

We study the transport of bacteria in a porous media modeled by a square channel containing one cylindrical obstacle via molecular dynamics simulations coupled to a lattice Boltzmann fluid.


2013 ◽  
Vol 88 ◽  
pp. 743-752 ◽  
Author(s):  
F. Mantovani ◽  
M. Pivanti ◽  
S.F. Schifano ◽  
R. Tripiccione

2004 ◽  
Vol 16 (19) ◽  
pp. S1931-S1944 ◽  
Author(s):  
S V Lishchuk ◽  
C M Care ◽  
I Halliday

2020 ◽  
Vol 256 ◽  
pp. 107443
Author(s):  
Nadiia Kulyk ◽  
Daniel Berger ◽  
Ana-Sunčana Smith ◽  
Jens Harting

2013 ◽  
Vol 24 (12) ◽  
pp. 1340001 ◽  
Author(s):  
SILVIA PALPACELLI ◽  
PAUL ROMATSCHKE ◽  
SAURO SUCCI

We develop a quantum lattice Boltzmann (QLB) scheme for the Dirac equation with a nonlinear fermion interaction provided by the Nambu–Jona-Lasinio (NJL) model. Numerical simulations in 1 + 1 space-time dimensions, provide evidence of dynamic mass generation, through spontaneous breaking of chiral symmetry.


Sign in / Sign up

Export Citation Format

Share Document