Treatment of Terminal Pain in Cancer Patients by Means of Iontophoresis of Vinca Alkaloids

Author(s):  
A. Szücs ◽  
B. Csillik ◽  
E. Knyihár-Csillik
2019 ◽  
Vol 20 (6) ◽  
pp. 1451 ◽  
Author(s):  
Renata Zajączkowska ◽  
Magdalena Kocot-Kępska ◽  
Wojciech Leppert ◽  
Anna Wrzosek ◽  
Joanna Mika ◽  
...  

Chemotherapy-induced peripheral neuropathy (CIPN) is one of the most frequent side effects caused by antineoplastic agents, with a prevalence from 19% to over 85%. Clinically, CIPN is a mostly sensory neuropathy that may be accompanied by motor and autonomic changes of varying intensity and duration. Due to its high prevalence among cancer patients, CIPN constitutes a major problem for both cancer patients and survivors as well as for their health care providers, especially because, at the moment, there is no single effective method of preventing CIPN; moreover, the possibilities of treating this syndrome are very limited. There are six main substance groups that cause damage to peripheral sensory, motor and autonomic neurons, which result in the development of CIPN: platinum-based antineoplastic agents, vinca alkaloids, epothilones (ixabepilone), taxanes, proteasome inhibitors (bortezomib) and immunomodulatory drugs (thalidomide). Among them, the most neurotoxic are platinum-based agents, taxanes, ixabepilone and thalidomide; other less neurotoxic but also commonlyused drugs are bortezomib and vinca alkaloids. This paper reviews the clinical picture of CIPN and the neurotoxicity mechanisms of the most common antineoplastic agents. A better understanding of the risk factors and underlying mechanisms of CIPN is needed to develop effective preventive and therapeutic strategies.


1986 ◽  
Vol 16 (3) ◽  
pp. 223-228 ◽  
Author(s):  
Roger Rahmani ◽  
Francoise Gu�ritte ◽  
Marie Martin ◽  
Sylvaine Just ◽  
Jean-Paul Cano ◽  
...  

2017 ◽  
Vol 24 (2) ◽  
pp. 121-129
Author(s):  
Min Woo Hur ◽  
Seung Min Hahn ◽  
In Seok Moon ◽  
Ju Yeon Lim ◽  
Seul Mi Lee ◽  
...  

Author(s):  
Tai-Te Chao ◽  
John Sullivan ◽  
Awtar Krishan

Maytansine, a novel ansa macrolide (1), has potent anti-tumor and antimitotic activity (2, 3). It blocks cell cycle traverse in mitosis with resultant accumulation of metaphase cells (4). Inhibition of brain tubulin polymerization in vitro by maytansine has also been reported (3). The C-mitotic effect of this drug is similar to that of the well known Vinca- alkaloids, vinblastine and vincristine. This study was carried out to examine the effects of maytansine on the cell cycle traverse and the fine struc- I ture of human lymphoblasts.Log-phase cultures of CCRF-CEM human lymphoblasts were exposed to maytansine concentrations from 10-6 M to 10-10 M for 18 hrs. Aliquots of cells were removed for cell cycle analysis by flow microfluorometry (FMF) (5) and also processed for transmission electron microscopy (TEM). FMF analysis of cells treated with 10-8 M maytansine showed a reduction in the number of G1 cells and a corresponding build-up of cells with G2/M DNA content.


2021 ◽  
Vol 160 (1) ◽  
pp. 234-243
Author(s):  
Diana Samoil ◽  
Nazek Abdelmutti ◽  
Lisa Ould Gallagher ◽  
Nazlin Jivraj ◽  
Naa Kwarley Quartey ◽  
...  

2007 ◽  
Vol 177 (4S) ◽  
pp. 297-297
Author(s):  
Kristina Schwamborn ◽  
Rene Krieg ◽  
Ruth Knüchel-Clarke ◽  
Joachim Grosse ◽  
Gerhard Jakse

2007 ◽  
Vol 177 (4S) ◽  
pp. 130-130
Author(s):  
Markus Graefen ◽  
Jochen Walz ◽  
Andrea Gallina ◽  
Felix K.-H. Chun ◽  
Alwyn M. Reuther ◽  
...  

2007 ◽  
Vol 177 (4S) ◽  
pp. 200-200 ◽  
Author(s):  
Andrea Gallina ◽  
Pierre I. Karakiewicz ◽  
Jochen Walz ◽  
Claudio Jeldres ◽  
Quoc-Dien Trinh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document