The Three-Dimensional Evolution of Oblique Waves in Plane Wakes

Author(s):  
Eckart Meiburg

This work involves the use of controlled periodic disturbances to excite a plane Tollmien-Schlichting (TS) wave at one frequency ( f 2D) along with pairs of oblique waves with equal but opposite wave angles at a different frequency ( f 3D) in order to study the resonant growth of 3D modes in a Blasius boundary layer. In our earlier work (Corke & Mangano 1989; Corke 1990), the frequency of the oblique modes was exactly the subharmonic of the plane Tollmien-Schlichting (TS) mode. These modes were also phase-speed locked so that in terms of their streamwise wave numbers, α2D=1/2 α3D. This so-called ‘tuned’ subharmonic resonance leads to the enhanced growth of the otherwise linearly damped oblique waves, as well as the growth of higher harmonic 3D modes with frequencies and wave numbers: (3/2 f2d, 3/2 α2D, ±β3D), (5/2 f2d, 5/2 α2D, ±β3D), (f2d, α2D, ±2β3D) and (0, 0, ±2β3D). Even when the initial 3D oblique waves have frequencies which are close to the TS subharmonic frequency, a ‘detuned’ subharmonic resonance leads to the enhanced growth of the 3D mode. In addition, it promotes the growth of numerous discrete modes produced by successive sum and difference interactions. These interacted modes are also three dimensional, with higher amplification rates that increase with the interaction order. The growth of these modes accounts for the rapid spectral filling, and low-frequency modulation commonly observed in natural subharmonic transition. Starting from a ‘tuned' resonance, this scenario then provides a mechanism for the generation of a broad spectrum at the later stages of subharmonic mode transition. However, the results also suggest that with ‘natural’ transition, starting from low-amplitude broadband disturbances, the most likely 2D/3D resonance will be ‘detuned’.


Author(s):  
Vladimir Shigunov ◽  
Alexander von Graefe ◽  
Ould el Moctar

Horizontal sectional loads (horizontal shear force and horizontal bending moment) and torsional moment are more difficult to predict with potential flow methods than vertical loads, especially in stern-quartering waves. Accurate computation of torsional moment is especially important for large modern container ships. The three-dimensional (3D) seakeeping code GL Rankine has been applied previously to the computation of vertical loads in head, following and oblique waves; this paper addresses horizontal loads and torsional moment in oblique waves at various forward speeds for a modern container ship. The results obtained with the Rankine source-patch method are compared with the computations using zero-speed free-surface Green functions and with model experiments.


2021 ◽  
Vol 933 ◽  
Author(s):  
Jason Yalim ◽  
Bruno D. Welfert ◽  
Juan M. Lopez

The instability and dynamics of a vertical oscillatory boundary layer in a container filled with a stratified fluid are addressed. Past experiments have shown that when the boundary oscillation frequency is of the same order as the buoyancy frequency, the system is unstable to a herringbone pattern of oblique waves. Prior studies assuming the basic state to be a unidirectional oscillatory shear flow were unable to account for the oblique waves. By accounting for confinement effects present in the experiments, and the ensuing three-dimensional structure of the basic state, we are able to numerically reproduce the experimental observations, opening the door to fully analysing the impacts of stratification on such boundary layers.


2014 ◽  
Vol 741 ◽  
pp. 228-251 ◽  
Author(s):  
Mochamad Dady Ma’mun ◽  
Masahito Asai ◽  
Ayumu Inasawa

AbstractThe effects of surface corrugation with small amplitude on the growth of Tollmien–Schlichting (T–S) waves were examined experimentally in a zero-pressure-gradient boundary layer. Two- and three-dimensional corrugations of sinusoidal geometry with wavelengths of the same order as that of the two-dimensional T–S wave were considered. The corrugation amplitudes were one order of magnitude smaller than the boundary-layer displacement thickness. Streamwise growth of T–S waves on the corrugated walls was compared with that in the boundary layer on the smooth surface. A distinct difference was found in the destabilizing effect between the two- and three-dimensional corrugations. The two-dimensional corrugation significantly enhanced the growth of two-dimensional T–S waves even when the corrugation amplitude was only ∼10% of the displacement thickness. On decreasing the corrugation amplitude, the growth rate of two-dimensional T–S waves asymptotically approached that in the smooth-wall case. On the other hand, the three-dimensional corrugation had only a small influence on the growth of two-dimensional T–S waves even when the corrugation amplitude was as large as 20% of the displacement thickness. For three-dimensional corrugations, however, a pair of oblique waves was generated and developed by an interaction between the two-dimensional T–S wave and the corrugation-induced mean-flow distortion for the corrugation wavelength considered. On increasing the corrugation amplitude, the oblique waves generated were increased in amplitude and thus significantly influenced the secondary instability process.


1989 ◽  
Vol 209 ◽  
pp. 93-150 ◽  
Author(s):  
T. C. Corke ◽  
R. A. Mangano

By carefully controlled phase-coupled input of simultaneous two- and three-dimensional disturbances, the nonlinear evolution and breakdown of the laminar flow in a boundary layer was examined. This involved the generation of plane Tollmien–Schlichting waves and pairs of oblique waves so as to promote nearresonance conditions which have been theoretically shown to lead to the rapid development of three-dimensionality in unstble boundary layers. Special emphasis is placed on the two prominent mechanisms, namely resonant-triads of Orr–Sommerfeld modes and the secondary instability of the streamwise periodic flow to spanwise periodic three-dimensional disturbances. The sensitivity of these mechanisms on the amplitudes and wavenumbers of the input disturbances was of special focus.The simultaneous two- and three-dimensional wave generation was accomplished using a spanwise array of line heaters suspended just above the wall at the approximate height of the critical layer in the laminar boundary layer. These were operated to produce, through local heating, time-periodic spanwise-phase-varying velocity perturbations. Of primary emphasis in this paper are conditions obtained by the combined forcing of fundamental plane waves with wavenumbers (α, 0) and pairs of subharmonic oblique waves (½α, ± β). The reslults document resonant growth of energy in the subharmonic modes, the formation of staggered lambda vortex patterns with a cross-stream scale commensurate with the seeded ± β condition, and their subsequet transition to turbulence. Complete documentation of the flow field at these various stages is presented using smoke-wire flow visualization and through phase-conditioned hot-wire surveys measuring all three velocity components in three space dimensions.


2007 ◽  
Vol 574 ◽  
pp. 131-154 ◽  
Author(s):  
A. VOROBEV ◽  
O. ZIKANOV

Instability and transition to turbulence in a temporally evolving free shear layer of an electrically conducting fluid affected by an imposed parallel magnetic field is investigated numerically. The case of low magnetic Reynolds number is considered. It has long been known that the neutral disturbances of the linear problem are three-dimensional at sufficiently strong magnetic fields. We analyse the details of this instability solving the generalized Orr–Sommerfeld equation to determine the wavenumbers, growth rates and spatial shapes of the eigenmodes. The three-dimensional perturbations are identified as oblique waves and their properties are described. In particular, we find that at high hydrodynamic Reynolds number, the effect of the strength of the magnetic field on the fastest growing perturbations is limited to an increase of their oblique angle. The dimensions and spatial shape of the waves remain unchanged. The transition to turbulence triggered by the growing oblique waves is investigated in direct numerical simulations. It is shown that initial perturbations in the form of superposition of two symmetric waves are particularly effective in inducing three-dimensionality and turbulence in the flow.


Author(s):  
I. Basaran ◽  
O. Belik ◽  
P. Temarel

The symmetric (vertical bending) and antisymmetric (coupled horizontal bending and twisting) dynamic behaviours of a feeder container ship travelling in regular oblique waves are investigated using two- and three-dimensional hydroelasticity theories. Different three-dimensional FE structural models are generated in order to investigate the influence of hatch coamings and on-deck container cargo. Corresponding beam structural idealizations are obtained from these models. Comparisons are carried out between the dynamic characteristics and wave-induced loads predicted by both methods.


Sign in / Sign up

Export Citation Format

Share Document