The development of vascular networks on-chip is crucial for the long-term culture of three-dimensional cell aggregates such as organoids, spheroids, tumoroids, and tissue explants. Despite the rapid advancement of microvascular network systems and organoid technology, vascularizing organoids-on-chips remains a challenge in tissue engineering. Moreover, most existing microfluidic devices poorly reflect the complexity of in vivo flows and require complex technical settings to operate. Considering these constraints, we developed an innovative platform to establish and monitor the formation of endothelial networks around model spheroids of mesenchymal and endothelial cells as well as blood vessel organoids generated from pluripotent stem cells, cultured for up to 15 days on-chip. Importantly, these networks were functional, demonstrating intravascular perfusion within the spheroids or vascular organoids connected to neighbouring endothelial beds. This microphysiological system thus represents a viable organ-on-chip model to vascularize biological tissues and should allow to establish perfusion into organoids using advanced microfluidics.