Three-dimensional finite element analysis of overload-induced alveolar bone resorption around dental implants

Author(s):  
Lihe Qian ◽  
Mitsugu Todo ◽  
Yasuyuki Matsushita ◽  
Kiyoshi Koyano
Author(s):  
Mohammed Abusaad Siddiqui ◽  
Sudheer N ◽  
Dulala Vikram Raj ◽  
Aditi Chintamani Sabnis ◽  
Alluru Amrutesh ◽  
...  

The treatment modality for completely edentulous arches has shifted from complete dentures to dental implants during the last 15-20 years. Tilting of implants has reduced the concern of resorbed posterior ridges in completely edentulous patients with “All-on-four” and “All-on-six” concept of dental implants. The purpose of this study is to compare the biomechanical behaviour of the “All-on-four”, “All-on-six” models with tilted distal implants at different angulations of 30 and 45 ° with four parallel placed implant-supported fixed prosthesis, and six parallel placed implant-supported fixed prosthesis models as controls using three-dimensional finite element analysis. The results showed that in all the models, in cancellous bone, cortical bone, implant and prosthesis – “All-on-four” model with distal implants tilted at an angulation of 30° showed stress values less than or equivalent to all the other models except on the implant in the presence of cantilever and on prosthesis during full mouth biting load where maximum stresses were observed. The study shows that All-on-four concept with tilted distal implants at an angulation of 30° showed stress values favourable for the rehabilitation of completely edentulous maxilla, but the presence of cantilever remains an area of concern.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Xiaoning Kang ◽  
Yiming Li ◽  
Yixi Wang ◽  
Yao Zhang ◽  
Dongsheng Yu ◽  
...  

Occlusal trauma caused by improper bite forces owing to the lack of periodontal membrane may lead to bone resorption, which is still a problem for the success of dental implant. In our study, to avoid occlusal trauma, we put forward a hypothesis that a microelectromechanical system (MEMS) pressure sensor is settled on an implant abutment to track stress on the abutment and predict the stress on alveolar bone for controlling bite forces in real time. Loading forces of different magnitudes (0 N–100 N) and angles (0–90°) were applied to the crown of the dental implant of the left central incisor in a maxillary model. The stress distribution on the abutment and alveolar bone were analyzed using a three-dimensional finite element analysis (3D FEA). Then, the quantitative relation between them was derived using Origin 2017 software. The results show that the relation between the loading forces and the stresses on the alveolar bone and abutment could be described as 3D surface equations associated with the sine function. The appropriate range of stress on the implant abutment is 1.5 MPa–8.66 MPa, and the acceptable loading force range on the dental implant of the left maxillary central incisor is approximately 6 N–86 N. These results could be used as a reference for the layout of MEMS pressure sensors to maintain alveolar bone dynamic remodeling balance.


Sign in / Sign up

Export Citation Format

Share Document