Historic Land Use and Social Policy Affecting Large-Scale Changes in Forest Cover in the Midwest United States

2010 ◽  
pp. 1369-1382
Author(s):  
Mikaela Schmitt-Harsh ◽  
Sean P. Sweeney ◽  
Tom P. Evans
2013 ◽  
Vol 368 (1619) ◽  
pp. 20120153 ◽  
Author(s):  
Marcia N. Macedo ◽  
Michael T. Coe ◽  
Ruth DeFries ◽  
Maria Uriarte ◽  
Paulo M. Brando ◽  
...  

Large-scale cattle and crop production are the primary drivers of deforestation in the Amazon today. Such land-use changes can degrade stream ecosystems by reducing connectivity, changing light and nutrient inputs, and altering the quantity and quality of streamwater. This study integrates field data from 12 catchments with satellite-derived information for the 176 000 km 2 upper Xingu watershed (Mato Grosso, Brazil). We quantify recent land-use transitions and evaluate the influence of land management on streamwater temperature, an important determinant of habitat quality in small streams. By 2010, over 40 per cent of catchments outside protected areas were dominated (greater than 60% of area) by agriculture, with an estimated 10 000 impoundments in the upper Xingu. Streams in pasture and soya bean watersheds were significantly warmer than those in forested watersheds, with average daily maxima over 4°C higher in pasture and 3°C higher in soya bean. The upstream density of impoundments and riparian forest cover accounted for 43 per cent of the variation in temperature. Scaling up, our model suggests that management practices associated with recent agricultural expansion may have already increased headwater stream temperatures across the Xingu. Although increased temperatures could negatively impact stream biota, conserving or restoring riparian buffers could reduce predicted warming by as much as fivefold.


2003 ◽  
Vol 60 (9) ◽  
pp. 1078-1094 ◽  
Author(s):  
Jeff E Houlahan ◽  
C Scott Findlay

Habitat destruction and fragmentation have been identified as possible causes of large-scale amphibian declines. Here, we examine the effects of adjacent land use and water quality on wetland amphibian species richness, abundance, and community composition in 74 Ontario wetlands. Species richness was positively correlated with wetland area, forest cover, and the amount of wetlands on adjacent lands and negatively correlated with road density and nitrogen levels. The land-use effects peak at 2000–3000 m. Amphibian abundance was positively correlated with forest cover, distance to wetlands >20 ha, and amount of marsh habitat and negatively correlated with road density. The effects of adjacent land use were strongest at around 200 m. Land-use and water quality effects varied widely across species, although most species are positively correlated with forest cover and amount of wetlands on adjacent lands and negatively correlated with road density and water quality. These results suggest that the effects of adjacent land use on amphibian communities can extend over comparatively large distances. As such, effective wetland conservation will not be achieved merely through the creation of narrow buffer zones between wetlands and intensive land uses, but rather will require maintaining a heterogeneous regional landscape containing relatively large areas of natural forest and wetlands.


2010 ◽  
Vol 30 (13) ◽  
pp. 2025-2044 ◽  
Author(s):  
Vimal Mishra ◽  
Keith A. Cherkauer ◽  
Dev Niyogi ◽  
Ming Lei ◽  
Bryan C. Pijanowski ◽  
...  

2019 ◽  
Author(s):  
Adriaan J. Teuling ◽  
Emile de Badts ◽  
Femke A. Jansen ◽  
Richard Fuchs ◽  
Joost Buitink ◽  
...  

Abstract. Since the 1950s, Europe has seen large shifts in climate and land cover. Previous assessments of past and future changes in evapotranspiration or streamflow have either focussed on land use/cover or climate contributions, or have focussed on individual catchments under specific climate conditions. Here, we aim to understand how decadal changes in climate (e.g., precipitation, temperature) and land use (e.g., de-/afforestation, urbanization) have impacted the amount and distribution of water resources availability across Europe since the 1950s. To this end, we simulate the distribution of green and blue water fluxes at high-resolution (1 × 1 km) by combining (a) a steady-state Budyko model for water balance partitioning constrained by long-term (lysimeter) observations across different land-use types, (b) a novel decadal high-resolution historical land use reconstruction, and (c) gridded observations of key meteorological variables. The continental-scale patterns in the simulations agree well with coarser-scale observation-based estimates of evapotranspiration, and also with observed changes in streamflow from small basins across Europe. We find that strong shifts in the continental-scale patterns of evapotranspiration and streamflow have occured from 1950 to 2010. In Sweden, for example, increased precipitation dominates effects of large scale re- and afforestation leading to increases in both streamflow and evapotranspiration. In most of the Mediterrenean, decreased precipitation combines with increased forest cover and potential evapotranspiration to reduce streamflow. In spite of local and regional scale complexity, the Europe-wide net contribution of land use, precipitation and potential evapotranspiration changes to changes in ET is similar with around ~ 40 km3/y, equivalent to the discharge of a large river. For streamflow, changes in precipitation dominate land use and potential evapotranspiration contributions with ~ 90 km3/y compared to ~ 45 km3/y. Locally, increased forest cover and urbanisation have lead to significant decreases and increases of available streamflow.


BioScience ◽  
2010 ◽  
Vol 60 (4) ◽  
pp. 286-298 ◽  
Author(s):  
Mark A. Drummond ◽  
Thomas R. Loveland

2007 ◽  
Vol 31 (2) ◽  
pp. 107-129 ◽  
Author(s):  
Robert B. Kaplan ◽  
Richard B. Baldauf

Except for a few large scale projects, language planners have tended to talk and argue among themselves rather than to see language policy development as an inherently political process. A comparison with a social policy example, taken from the United States, suggests that it is important to understand the problem and to develop solutions in the context of the political process, as this is where decisions will ultimately be made.


Author(s):  
Michael Egan ◽  
Casey Day ◽  
Todd E Katzner ◽  
Patrick A. Zollner

Gray fox (Urocyon cinereoargenteus Schreber, 1775) populations in portions of the eastern United States have experienced declines whose trajectories differ from those of other mesocarnivore populations. One hypothesis is that gray fox declines may result from interspecific interactions, particularly competition with abundant coyotes (Canis latrans Say, 1823). Alternatively, gray foxes may respond negatively to increased urbanization and reduced forest cover. To evaluate these hypotheses, we used single-species occupancy models of camera trap data to test the effects of habitat covariates, such as the amount of urbanization and forest, on coyote and gray fox occupancy. Additionally, we test the effect of an n-mixture based index of the number of coyotes at each camera trap site on gray fox occupancy. Results indicate that occupancy probabilities of coyote and gray fox relate positively to the amount of forest, but they provided no evidence urban cover impacts gray foxes. Additionally, gray fox occupancy was negatively related to the index of the number of coyotes at each site. Our models support the idea that interactions with coyotes impact gray fox occupancy across the eastern U.S. These results illustrate how large scale studies can relate mechanisms identified within specific landscapes to phenomena observed at larger scales.


Sign in / Sign up

Export Citation Format

Share Document