Significance of Crop Rotation and Cultivars Resistant to Potato Cyst Nematode on Potato Production

Author(s):  
K. Zawiślak ◽  
J. Tyburski ◽  
B. Rychik
Plant Disease ◽  
2014 ◽  
Vol 98 (4) ◽  
pp. 575-575 ◽  
Author(s):  
B. Nježić ◽  
B. Gerič Stare ◽  
S. Širca ◽  
N. Grujić

Potato cyst nematodes (PCN), the golden cyst nematode Globodera rostochiensis (Woll.) Bahrens, and the pale potato cyst nematode G. pallida (Stone) stand out by their remarkable and efficient parasitic adaptations causing high economic losses in potato production worldwide. They are A2 quarantine pests in EPPO countries as well as in Bosnia and Herzegovina. Up to now, only G. rostochiensis was reported from Bosnia and Herzegovina in 2011 (1). A systematic survey on the presence of PCN on entire territory of Bosnia and Herzegovina started in 2011. During the PCN survey, each year 120 soil samples of 1.5 liters were collected in the Republic of Srpska, one of the two entities of Bosnia and Herzegovina. The samples were collected by soil auger 10 cm in length with a diameter of 1.5 cm consisting of 100 cores. Entire samples were processed by Seinhorst elutriator (4). In autumn of 2012, PCN viable cysts were found in two soil samples originating from one field. From one sample, 12 cysts were extracted, and 2 from another sample. The morphology of cysts and second stage juveniles and molecular analysis established the identity of this species as pale cyst nematode G. pallida (3). In addition, the sequencing of the ribosomal DNA region revealed unequivocal similarity to G. pallida (GenBank Accession No. HF968449), while PCR-RFLP analysis (2) showed European type of G. pallida. The infested field is located in Rogatica, 70 km east of Sarajevo, which is one of the main seed and potato production areas in Bosnia and Herzegovina. The field history revealed that farm-propagated, farm-saved seed potatoes could spread the nematodes to other fields as well. Therefore, 26 additional samples were taken from the fields that belong to the infested field owner and the surrounding fields, but no cysts were found in additional samples. To determine infestation focus and its size, the infested field (1.1 ha) was divided into 46 plots (25 × 10 m) and resampled by taking samples of 60 cores per plot. The detailed sampling of the field revealed a high infestation of 1 cyst per gram of soil in the infestation focus. The high infestation level and the propagation of farm-own seed potatoes suggest that the introduction of G. pallida might have occurred several years ago, probably with imported seed potatoes. The infested field was subjected to the phytosanitary measure of banning potato production for a period of 6 years with the possibility of its prolongation, if cysts with live content are found afterward. It is expected that the nematode is present in other fields due to the farmer's practices of propagating farm-saved seed potatoes and deficient field machinery hygiene. Therefore, the whole area will be intensively monitored for the presence of PCN in the future. An adequate pest management plan will be prepared after PCN pathotype identification. To our knowledge, only one field was found infested with G. pallida during the 3-year PCN survey in Bosnia and Herzegovina. Strict phytosanitary measures for preventing further PCN introductions and spreading should be intensified. References: (1) I. Ostojić et al. Plant Dis. 95:883, 2011. (2) S. Širca et al. Phytopathol. Mediterr. 49:361, 2010. (3) A. M. Skantar et al. J. Nematol. 39:133, 2007. (4) J. van Bezooijen. Methods and Techniques for Nematology, Wageningen University, 2006.


2019 ◽  
Vol 34 (01) ◽  
Author(s):  
Priyank H. Mhatre ◽  
Divya K. L ◽  
Venkatasalam . ◽  
Venkatasalam . ◽  
E. P. ◽  
...  

Potato cyst nematode is the most devastating pest and is one of the most important problem in potato production in India as well as worldwide. Recently, govt. of India kept quarantine regulations in Jammu and Kashmir, Himachal Pradesh and Uttarakhand besides Tamil Nadu which shows the seriousness of this problem. In absence of host this nematode can survive in a protective and hard cyst. Under favourable environmental and crop conditions the nematode infects the roots and gets their nourishment for development and reproduction. As a result of this plant shows yellowing and stunted growth which ultimately cause yield reductions. To get rid of this problem integrated nematode management measures such as disease free seeds, resistant varieties, crop rotation, intercropping, biological control and chemical control should be practiced to maintain the population of cyst nematode below economic threshold level.


2013 ◽  
Vol 13 (2) ◽  
pp. 105-109
Author(s):  
Lisnawita Lisnawita ◽  
Supramana Supramana ◽  
Gede Suastika

Identification of Globodera rostochiensis using differential clones. Potato cyst nematode, Globodera rostochiensis, is a relatively new pathogen in Indonesia that becomes a constraint to potato production. To manage the parasite effectively, it is very important to identify the pathotype of  G. rostochiensis populations. Therefore, this research was carried out to identify G.  rostochiensis pathotypes. Four G. rostochiensis samples, consisting of three samples from East Java and one sample from Central Java, were identified using a set of differential clones. The result showed that G. rostochiensis samples from East Java were new pathotype, whereas the sample from Central Java was Ro1 pathotype.


2020 ◽  
Author(s):  
Xiaohong Wang ◽  
Huijun Yang ◽  
Pierre-Yves Veronneau ◽  
David Thurston ◽  
Benjamin Mimee

The potato cyst nematode, Globodera rostochiensis, is a regulated pest posing a serious threat to potato production worldwide. Although the endemic pathotype (Ro1) of G. rostochiensis has been confined to New York State for several decades as a result of quarantine regulations and management with resistant potato cultivars, a virulent pathotype, Ro2, has emerged, for which control measures are scarce. The ability to detect Ro2 early in fields is necessary to sustain the success of G. rostochiensis quarantine in the U.S. Here, we report the comparative analysis of whole genome sequences of multiple single-cyst-derived Ro1 and Ro2 lines, propagated from original field populations. The identified discriminant variants are good targets for developing molecular diagnostic tools for differentiating G. rostochiensis pathotypes in NY.


2017 ◽  
Vol 113 ◽  
pp. 51-55 ◽  
Author(s):  
Magdalena Święcicka ◽  
Waldemar Skowron ◽  
Piotr Cieszyński ◽  
Joanna Dąbrowska-Bronk ◽  
Mateusz Matuszkiewicz ◽  
...  

2018 ◽  
Vol 9 ◽  
Author(s):  
Weiming Hu ◽  
Noah Strom ◽  
Deepak Haarith ◽  
Senyu Chen ◽  
Kathryn E. Bushley

1982 ◽  
Vol 99 (2) ◽  
pp. 325-328 ◽  
Author(s):  
M. F. B. Dale ◽  
M. S. Phillips

SUMMARYThe inheritance of resistance to Globodera pallida was studied in seedling progenies derived from Solanum tuberosum ssp. andigena CPC 2802 (H3) and S. vernei and compared with resistance to G. rostochiensis derived from S. tuberosum ssp. andigena CPC 1673(H1). The resistance of CPC 2802 was originally thought to be due to a major gene (H3), but results presented here demonstrate that it and that derived from S. vernei are inherited in a similar manner quite distinct from the major gene inheritance from CPC 1673 (HI). It is concluded that the resistances derived from CPC 2802 and S. vernei are both polygenic in nature. These findings are discussed in relation to breeding policy and screening methods.


Nematology ◽  
2004 ◽  
Vol 6 (3) ◽  
pp. 375-387 ◽  
Author(s):  
N. Aileen Ryan ◽  
Peter Jones

AbstractSeventy bacteria, isolated from the rhizosphere of the potato cyst nematode (PCN) host plant, potato, were cultured in the presence and absence of potato root leachate (PRL) and the resultant culture filtrates were analysed for their ability to affect the hatch in vitro of the two PCN species. Of the isolates tested, nine had a significant effect on PCN hatch. Six affected Globodera pallida hatch and three affected G. rostochiensis hatch. Five of the isolates significantly increased hatch only when cultured in the presence of PRL. Three of the isolates decreased PCN hatch significantly in PRL. Only one isolate increased hatch significantly in the absence of PRL. No isolate affected the hatch of both species. Six of the nine isolates that significantly affected PCN hatch had been pre-selected by culturing on PRL. Bacterial isolates from PCN non-hosts (14 from wheat, 17 from sugar beet) were also tested for hatching activity. The principal effect of the hatch-active isolates from the PCN non-host plants was to increase PCN hatch in the presence of PRL. In contrast to the host bacteria results, the isolates from non-host plants affected only G. rostochiensis hatch (three wheat isolates and four sugar beet isolates significantly increased G. rostochiensis hatch); no such isolate affected G. pallida hatch significantly in the presence of PRL. Ten isolates (32%) from non-host plants had the ability to increase significantly the hatch of PCN in the absence of PRL (eight of these affected G. rostochiensis hatch and four affected G. pallida hatch), compared to only one bacterial isolate (1%) from a host plant. The majority of the isolates from non-hosts produced PCN species-specific effects, as with the bacteria isolated from potatoes, although two wheat isolates increased the hatch of both species significantly in the absence of PRL. Of 20 hatch-active bacterial isolates (from all three plants) identified, 70% were Bacillus spp. Other genera identified were Arthrobacter , Acinetobacter and Staphylococcus .


Sign in / Sign up

Export Citation Format

Share Document