Landscape pattern and population conservation

Author(s):  
Susan Harrison ◽  
Lenore Fahrig
2013 ◽  
Vol 15 (4) ◽  
pp. 560
Author(s):  
Yu ZHONG ◽  
Qian XING ◽  
Renjie LI ◽  
Junhai ZHANG ◽  
Rui CAO

2021 ◽  
Vol 13 (11) ◽  
pp. 6326
Author(s):  
Xiye Zheng ◽  
Jiahui Wu ◽  
Hongbing Deng

Traditional villages are the historical and cultural heritage of people around the world. With the increases in urbanization and industrialization, the continuation of traditional villages and the inheritance of historical and cultural heritage are facing risk. Therefore, to grasp the spatial characteristics of them and the human–nature interaction mechanism in Southwest China, we analyzed the distribution pattern of traditional villages using the ArcGIS software. Then, we further analyzed the spatial clustering characteristics, influencing factors and landscape pattern, and put forward relevant protection countermeasures and suggestions. The results revealed that traditional villages in Southwest China were clustered, being mainly distributed in areas with relatively low elevation, gentle slopes, low relative positions, nearby water sources, and convenient transportation. They can be divided into four categories due to obvious differences in influencing factors such as elevation, slope, relative position, distance to the nearest river, population density, etc. The landscape pattern of traditional villages differed among the different clusters, being mainly composed of forests, shrubs, and cultivated land. With the increase in the buffer radius, the landscape pattern of them changed significantly. The results of this study reflect that traditional villages and the natural environment are interdependent, so the protection of traditional villages should carry out measures according to local conditions.


2021 ◽  
Vol 125 ◽  
pp. 107495
Author(s):  
Changjiang Liu ◽  
Fei Zhang ◽  
Verner Carl Johnson ◽  
Pan Duan ◽  
Hsiang-te Kung

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ruikang Li ◽  
Yangbing Li ◽  
Bo Li ◽  
Dianji Fu

AbstractAnalyses of landscape change patterns that are based on elevation and slope can not only provide reasonable interpretations of landscape patterns but can also help to reveal evolutionary laws. However, landscape change patterns and their model in different landforms of the typical watershed in the Three Gorges Reservoir Area (TGRA) has not been quantified and assessed effectively. As a complex geographical unit, the ecological environment in the middle reach of the Yangtze River has experienced great changes due to the construction of the Three Gorges Project (TGP) and its associated human activities. Here, based mainly on a digital elevation model (DEM) and remotely sensed images from 1986, 2000, 2010, and 2017 and by using GIS technology, speeds/ trends of landscape change, the index of landscape type change intensity, landscape pattern indices, and landscape ecological security index, the spatial and temporal evolution characteristics of different elevations, slopes, and buffer landscape types were analyzed in typical watersheds, as well as an evolutionary model of the landscape pattern. The results indicated that (1) the landscape types along with the land classification and buffer zone that were influenced by the TGR construction have undergone a phased change, with the period 2000–2010 being the most dramatic period of landscape evolution during the impoundment period; (2) landscape type shifts from human-dominated farmland to nature-driven forestland and shrub-land as elevations, slopes and buffer distances increased. The landscape has shifted from diversity to relative homogeneity; (3) land types and buffer zones played essential roles in the landscape pattern index, which is reflected in the differences in landscape type indices for spatial extension and temporal characteristics. The results of this paper illustrate the spatial–temporal characteristics of various landscape types at three distinct stages in the construction of the TGR. These findings indicate that the landscape ecological security of the watershed is improving year by year. The follow-up development of the TGRA needs to consider the landscape change patterns of different landforms.


2021 ◽  
Vol 787 (1) ◽  
pp. 012053
Author(s):  
D G Wang ◽  
Y J Dou ◽  
A Q Shi ◽  
J Cheng ◽  
D A Lv

Sign in / Sign up

Export Citation Format

Share Document