Nuclear Power and Climate Change Mitigation: Search for Low-Carbon Energy Mix in Asia

2017 ◽  
pp. 71-88
Author(s):  
Nandakumar Janardhanan
Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6452
Author(s):  
Dalia Streimikiene ◽  
Tomas Baležentis ◽  
Artiom Volkov ◽  
Mangirdas Morkūnas ◽  
Agnė Žičkienė ◽  
...  

The paper deals with the exposition of the main barriers and drivers of renewable energy usage in rural communities. Climate change mitigation is causing governments, policymakers, and international organizations worldwide to embark on policies, leading to increased use of renewable energy sources and improvement of energy efficiency. Climate change mitigation actions, including the Green Deal strategy in the EU, require satisfying the expanding energy demand and complying with the environmental restrictions. At the same time, the prevailing market structure and infrastructure relevant to the energy systems are undergoing a crucial transformation. Specifically, there has been a shift from centralized to more decentralized and interactive energy systems that are accompanied by a low-carbon energy transition. Smart Grid technology and other innovations in the area of renewable energy microgeneration technologies have enabled changes in terms of the roles of energy users: they can act as prosumers that are producing and consuming energy at the same time. Renewable energy generation that is allowing for deeper involvement of the citizens may render higher social acceptance, which, in turn, fuels the low-carbon energy transition. The collective energy prosumption in the form of energy cooperatives has become a widespread form of renewable energy initiatives in rural communities. Even though renewable energy consumption provides a lot of benefits and opportunities for rural communities, the fast penetration of renewables and energy prosumption encounter several important barriers in the rural areas. This paper analyses the main barriers and drivers of renewable energy initiatives in rural areas and provides policy implications for the low-carbon energy transition in rural areas.


Futures ◽  
2017 ◽  
Vol 93 ◽  
pp. 14-26 ◽  
Author(s):  
Alejandra Elizondo ◽  
Vanessa Pérez-Cirera ◽  
Alexandre Strapasson ◽  
José Carlos Fernández ◽  
Diego Cruz-Cano

2020 ◽  
Vol 5 (1) ◽  
pp. 47-58
Author(s):  
Didem Gunes Yilmaz ◽  

Paris Agreement of December 2015 was the last official initiative led by the United Nations (UN) as the driver of climate change mitigation. Climate change was hence linked with an increase in the occurrence of natural hazards. A variety of initiatives were consequently adopted under different themes such as sustainable cities, climate-friendly development and low-carbon cities. However, most of the initiatives targeted by global cities with urban areas being the focus in terms of taking action against global warming issues. This is due to the structural and environmental features of cities characterized by being populated, as such, they not only generate a large number of carbon emissions but also happens to be the biggest consumer of natural resources. In turn, they create a microclimate, which contributes to climate change. Masdar City, for example, was designed as the first fully sustainable urban area, which replaced fuel-based energy with the electric-based energy. China, as another example, introduced the Sponge Cities action, a method of urban water management to mitigate against flooding. Consequently, architects and urban planners are urged to conform to the proposals that would mitigate global warming. This paper, as a result, examines some of the models that have been internationally adopted and thereafter provide the recommendations that can be implemented in large urban areas in Turkey, primarily in Istanbul.


Author(s):  
Basanta K. Pradhan ◽  
Joydeep Ghosh

This paper compares the effects of a global carbon tax and a global emissions trading regime on India using a dynamic CGE framework. The sensitivity of the results to the value of a crucial elasticity parameter is also analysed. The results suggest that the choice of the mitigation policy is relatively unimportant from an efficiency perspective. However, the choice of the mitigation policy and the value of the substitution elasticity between value added and energy were found to be important determinants of welfare effects. Global climate change mitigation policies have the potential for promoting low carbon and inclusive growth in India.


2018 ◽  
Vol 10 (8) ◽  
pp. 2715 ◽  
Author(s):  
Alejandro Padilla-Rivera ◽  
Ben Amor ◽  
Pierre Blanchet

The design and study of low carbon buildings is a major concern in a modern economy due to high carbon emissions produced by buildings and its effects on climate change. Studies have investigated (CFP) Carbon Footprint of buildings, but there remains a need for a strong analysis that measure and quantify the overall degree of GHG emissions reductions and its relationship with the effect on climate change mitigation. This study evaluates the potential of reducing greenhouse gas (GHG) emissions from the building sector by evaluating the (CFP) of four hotpots approaches defined in line with commonly carbon reduction strategies, also known as mitigation strategies. CFP framework is applied to compare the (CC) climate change impact of mitigation strategies. A multi-story timber residential construction in Quebec City (Canada) was chosen as a baseline scenario. This building has been designed with the idea of being a reference of sustainable development application in the building sector. In this scenario, the production of materials and construction (assembly, waste management and transportation) were evaluated. A CFP that covers eight actions divided in four low carbon strategies, including: low carbon materials, material minimization, reuse and recycle materials and adoption of local sources and use of biofuels were evaluated. The results of this study shows that the used of prefabricated technique in buildings is an alternative to reduce the CFP of buildings in the context of Quebec. The CC decreases per m2 floor area in baseline scenario is up to 25% than current buildings. If the benefits of low carbon strategies are included, the timber structures can generate 38% lower CC than the original baseline scenario. The investigation recommends that CO2eq emissions reduction in the design and implementation of residential constructions as climate change mitigation is perfectly feasible by following different working strategies. It is concluded that if the four strategies were implemented in current buildings they would have environmental benefits by reducing its CFP. The reuse wood wastes into production of particleboard has the greatest environmental benefit due to temporary carbon storage.


Sign in / Sign up

Export Citation Format

Share Document