Deep Learning and Machine Learning Techniques for Intrusion Detection and Prevention in Wireless Sensor Networks: Comparative Study and Performance Analysis

Author(s):  
Pankaj R. Chandre ◽  
Parikshit N. Mahalle ◽  
Gitanjali R. Shinde
Author(s):  
Deepti Rani ◽  
Anju Sangwan ◽  
Anupma Sangwan ◽  
Tajinder Singh

With the enormous growth of sensor networks, information seeking from such networks has become an invaluable source of knowledge for various organizations to enhance the comprehension of people interests. Not only wireless sensor networks (WSNs) but its various classes also remain the hot topics of research. In this chapter, the primary focus is to understand the concept of sensor network in underwater scenario. Various mechanisms are used to recognize the activities underwater using sensor which examines the real-time events. With these features, a few challenges are also associated with sensor networks, which are addressed here. Machine learning (ML) techniques are the perfect key of success to resolve such issues due to their feasibility and adaption in complex problem environment. Therefore, various ML techniques have been explained to enhance the operational performance of WSNs, especially in underwater WSNs (UWSNs). The main objective of this chapter is to understand the concepts of UWSNs and role of ML to address the performance issues of UWSNs.


Sign in / Sign up

Export Citation Format

Share Document