Manipulation of Thermal Diffusion Channels

Author(s):  
Jingsong Wei
Keyword(s):  
1963 ◽  
Vol 60 ◽  
pp. 172-177 ◽  
Author(s):  
C. J. G. Slieker ◽  
A. E. de Vries

Author(s):  
N. Wakai ◽  
M. TsuTsumi ◽  
T. Setoya

Abstract Mechanism of destruction caused by electrostatic discharge of PN junction was examined from two viewpoints; classification of destruction mode with consideration to destructive energy density, and comparison of destruction shape. Destructive energy density of PN junction was calculated based on Speakman model, and destruction mode was classified by Wunsch-Bell plot. As a result of Wunsch-Bell plot, electric discharge which occur at low resistance, for example machine model (MM: C∙R = 200pF ∙ 0Ω), resulted in adiabatic destruction that does not involve thermal diffusion. With electric discharge at high resistance, for example human body model (HBM: C∙R = 100pF ∙ 1500Ω), excessive destruction in intermediate region that involves thermal diffusion, and depending on the device, destruction at equilibrium region were proven to be reproducible. In case of MM, (adiabatic region destruction) destruction was confirmed in a wide extent of the joint part, but in case of HBM (intermediate region destruction) destruction was confirmed near the center of the joint part. From this fact, it was found that by verifying the places of destruction and their shapes, although in special cases, it is possible to know the destruction mode when destruction occurs.


2019 ◽  
pp. 111-123 ◽  
Author(s):  
P. P. Sharin ◽  
M. P. Akimova ◽  
V. I. Popov

The paper studies structure and phase characteristics of the interphase zone diamond/matrix in dressers made by thermal diffusion metallization of a diamond combined with matrix sintering based on WC–Co and Cu impregnation. The compact arrangement of chromium powder particles around diamond grains and the shielding effect of copper foil create favorable conditions for thermal diffusion metallization of diamond at matrix sintering. A metallized coating chemically bonded with diamond and consisting of chromium carbide and solid solution of cobalt in chromium phases provides a strong diamond retention in the carbide matrix. It was shown that it is formed on the surface of the diamond under the conditions specified in the experiment and the temperature – time sintering mode. The specific productivity of experimental dresser made by hybrid technology at straightening green silicon carbide grinding wheel equaled 51.50 cm3/mg exceeding that of the control dresser made without metallization of diamonds by sintering with copper impregnation by 44.66%.


1976 ◽  
Vol 28 (2) ◽  
pp. 256-260 ◽  
Author(s):  
C. Sari ◽  
G. Schumacher
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document