Comparison of Physics Characteristics of Pressurized Water Reactor Type Advanced Light Water Reactors

Author(s):  
L. Thilagam ◽  
D. K. Mohapatra
1981 ◽  
Vol 52 (1) ◽  
pp. 86-99 ◽  
Author(s):  
F. S. Gunnerson ◽  
D. T. Sparks ◽  
D. K. Kerwin

2013 ◽  
Vol 101 (10) ◽  
pp. 675-680 ◽  
Author(s):  
S. Tietze ◽  
M. R. St. J. Foreman ◽  
C. Ekberg

Summary Methods for the small scale synthesis of I-131 labelled iodine species relevant to severe nuclear accidents in light water reactors have been developed. The introduced methods allow the synthesis of impurity free, volatile, inorganic elemental iodine and volatile, organic iodides such as methyl- and ethyl iodide, as well as butyl iodide, chloroiodomethane, allyl iodide and benzyl iodide with ease. The radioactive iodine containing products are sufficiently stable to allow their storage for later use. Due to their volatility the liquid species can be easily converted into gaseous species and thus can be used in research in liquid and gaseous phase. The primary motivation for the development of these synthesis methods is to study the behaviour of volatile iodine species under the conditions of a severe nuclear accident in a light water reactor. Thus, the chemicals involved in the synthesis are chosen in a way to not generate impurities (chlorine and organic solvents) in the products which interfere with competing reactions relevant during a severe nuclear accident. Teknopox Aqua VA epoxy paint, which is used in Swedish light water reactor containments, and its reactions with the produced iodine species are described. The synthesised iodine species undergo chemisorption on paint films. Different to elemental iodine, the organic iodides are non-reactive with copper surfaces. The sorbed iodine species are partly re-released mainly in form of organic iodides and not as elemental iodine when the exposed paint films are heat treated. The partitioning and hydrolysis behaviour of gaseous methyl- and ethyl iodide between containment gas phase and water pools is found to be similar. The methods have been designed to minimise the use of harmful materials and the production of radioactive waste.


2018 ◽  
Vol 4 (4) ◽  
Author(s):  
Muhammad Qasim Awan ◽  
Liangzhi Cao ◽  
Hongchun Wu ◽  
Chuanqi Zhao

Use of FCM fuel in light water reactors is an attractive option for existing and future generations of these reactors to make them accident tolerant in nature. This work focuses on the neutronic study of the use of burnable material in various configurations to control the excess reactivity and to keep the moderator temperature coefficient of reactivity (MTC) feedback negative for entire cycle length. Erbia and gadolinia, two conventional materials are used in three different configurations including quadruple isotropic (QUADRISO), bi-isotropic (BISO), and Matrix Mix forms. The results obtained from the implicit random treatment of the double heterogeneity of tri-structural isotropic (TRISO), QUADRISO, and BISO particles show that the erbia is the best material to be used in QUADRISO and Matrix Mix configurations with lowest reactivity swing for the life cycle and residual poison well below 0.5%. Gadolinia is usable in FCM environment only in the BISO form where enhanced self-shielding controls the depletion performance of the material. The gadolinia has almost zero residual poison at end of cycle (EOC); however, it has relatively large reactivity swing, which will need more micromanagement of the control rods during the plant operations. At the beginning of cycle (BOC), erbia-loaded assemblies have shown an increase in negative value of MTC compared with reference due to presence of resonance peak in erbium near 1 eV. The finally recommended material-configuration combinations have shown the excess reactivity containment in desired manner with good depletion performance and negative feedback of the MTC for life cycle.


Author(s):  
Subhasish Mohanty ◽  
William K. Soppet ◽  
Saurindranath Majumdar ◽  
Krishnamurti Natesan

In USA there are approximately 100 operating light water reactors (LWR) consisting fleet of both pressurized water reactors (PWR) and boiling water reactors (BWR). Most of these reactors were built before 1970 and the design lives of most of these reactors are 40 years. It is expected that by 2030, even those reactors that have received 20 year life extension license from the US nuclear regulatory commission (NRC) will begin to reach the end of their licensed periods of operation. For economical reason it is be beneficial to extend the license beyond 60 to perhaps 80 years that would enable existing plants to continue providing safe, clean and economic electricity without significant green house gas emissions. However, environmental fatigue is one of the major aging related issues for these reactors, and may create hurdles in long term sustainability of these reactors. To address some of the environmental fatigue related issues, Argonne National Laboratory (ANL) with the sponsorship of Department of Energy’s Light Water Reactor Sustainability (LWRS) program trying to develop mechanistic approach for more accurate life estimation of LWR components. In this context ANL conducted many fatigue experiments under different test and environment conditions on 316 stainless steel (316SS) material that is or similar grade steels are widely used in US reactors. Contrary to the conventional S∼N curve based empirical fatigue life estimation approach, the aim of the present DOE sponsored work is to understand material ageing more mechanistically (e.g. time dependent hardening and softening) under different test and environmental conditions. Better mechanistic understanding will help to develop computer based advanced modeling tools to better extrapolate stress-strain evolution of reactor component under multi-axial stress states and hence to help predicting their fatigue life more accurately. In this paper (part-I) the fatigue experiments under different test and environment conditions and related stress-strain results for 316 SS are discussed. In another paper (part-II) the related evolutionary cyclic plasticity material modeling techniques and results are discussed.


2021 ◽  
Vol 247 ◽  
pp. 10031
Author(s):  
Nicholas P. Luciano ◽  
Brian J. Ade ◽  
Kang Seog Kim ◽  
Andrew J. Conant

MPACT is a state-of-the-art core simulator designed to perform high-fidelity analysis using whole-core, three-dimensional, pin-resolved neutron transport calculations on modern parallel computing hardware. MPACT was originally developed to model light water reactors, and its capabilities are being extended to simulate gas-cooled, graphite-moderated cores such as Magnox reactors. To verify MPACT’s performance in this new application, the code is being formally benchmarked using representative problems. Progression problems are a series of example models that increase in complexity designed to test a code’s performance. The progression problems include both beginning-of-cycle and depletion calculations. Reference solutions for each progression problem have been generated using Serpent 2, a continuous-energy Monte Carlo reactor physics burnup calculation code. Using the neutron multiplication eigenvalue ke_ as a metric, MPACT’s performance is assessed on each of the progression problems. Initial results showed that MPACT’s multigroup cross section libraries, originally developed for pressurized water reactor problems, were not sufficient to accurately solve Magnox problems. MPACT’s improved performance on the progression problems is demonstrated using this new optimized cross section library.


Sign in / Sign up

Export Citation Format

Share Document