Numerical Analysis of Lean Premixed Micro Scale Swiss Roll Combustor

Author(s):  
Ronak R. Shah ◽  
Digvijay B. Kulshreshtha
2019 ◽  
Vol 827 ◽  
pp. 73-78
Author(s):  
Antonio Caggiano ◽  
Diego Said Schicchi ◽  
Sha Yang ◽  
Stefan Harenberg ◽  
Viktoria Malarics-Pfaff ◽  
...  

A micro-scale-based approach for the numerical analysis of cement-based materials, subjected to low-and high-cycle fatigue actions, is presented in this paper. The constitutive model is aimed at describing the evolving microstructural changes caused by cyclic loading protocols. More specifically, statistically representative microscopic geometries are equipped with a fracture-based model combined with a continuous inelastic constitutive law accumulating damage induced by the cyclic stress. The plastic-damage-based model is formulated combining the concepts of fracture-energy theories and damage stiffness degradations, representing the key phenomena occurring in concrete under fatigue. The paper explores the potential of the technique for assessing fatigue microcracks formation and growth, and their influence on the macroscopic behavior.


2016 ◽  
Vol 14 (5) ◽  
pp. 1003-1015
Author(s):  
Junjie Chen ◽  
Baofang Liu ◽  
Xuhui Gao ◽  
Deguang Xu

Abstract Flame temperature and structure are a useful tool for describing flame dynamics and flame stability, especially at the micro-scale. The objective of this study is to examine the effect of different kinetic models (that have been proven to accurately predict the macro-combustion behavior of hydrocarbons) on the combustion characteristics and the flame stability in microreactors, and to explore the applicability of these kinetic models at the micro-scale. Computational fluid dynamics (CFD) simulations of lean premixed methane-air flame in micro-channel reactors were carried out to examine the effect of different reaction mechanisms (Mantel, Duterque and Fernández-Tarrazo model) on the reaction rate and the flame structure and temperature. The time-scales with regard to homogeneous reaction and heat transfer were analyzed. The CFD results indicate that kinetic models strongly affect flame stability. Large transverse gradients in temperature and species are observed in all kinetic models, despite the small scales of the microreactor. Preheating, combustion, and post-combustion regions can be distinguished only in Duterque and Mantel model. Duterque model causes a stable elongated homogeneous flame with a considerable ignition delay as well as a dead region with cold feed accumulation near the entrance, and is inappropriate for micro-combustion studies because of the seriously overestimated flame temperature. Fernández-Tarrazo model causes a rapid extinction and a flashback risk, and is also inappropriate for micro-combustion studies due to the significantly underestimated reaction rate, without taking all kinetic factors into account. Mantel model can accurately predict the micro-flame behavior and consequently can be used for describing micro-combustion.


Sign in / Sign up

Export Citation Format

Share Document