UAV Swarm Attack-Defense Confrontation Based on Multi-agent Reinforcement Learning

2021 ◽  
pp. 5599-5608
Author(s):  
Shuzhe Xuan ◽  
Liangjun Ke
Author(s):  
Zhaoyue Xia ◽  
Jun Du ◽  
Jingjing Wang ◽  
Chunxiao Jiang ◽  
Yong Ren ◽  
...  

Author(s):  
Hao Jiang ◽  
Dianxi Shi ◽  
Chao Xue ◽  
Yajie Wang ◽  
Gongju Wang ◽  
...  

Author(s):  
Xiaoyu Zhu ◽  
Yueyi Luo ◽  
Anfeng Liu ◽  
Md Zakirul Alam Bhuiyan ◽  
Shaobo Zhang

2021 ◽  
Vol 11 (11) ◽  
pp. 4948
Author(s):  
Lorenzo Canese ◽  
Gian Carlo Cardarilli ◽  
Luca Di Di Nunzio ◽  
Rocco Fazzolari ◽  
Daniele Giardino ◽  
...  

In this review, we present an analysis of the most used multi-agent reinforcement learning algorithms. Starting with the single-agent reinforcement learning algorithms, we focus on the most critical issues that must be taken into account in their extension to multi-agent scenarios. The analyzed algorithms were grouped according to their features. We present a detailed taxonomy of the main multi-agent approaches proposed in the literature, focusing on their related mathematical models. For each algorithm, we describe the possible application fields, while pointing out its pros and cons. The described multi-agent algorithms are compared in terms of the most important characteristics for multi-agent reinforcement learning applications—namely, nonstationarity, scalability, and observability. We also describe the most common benchmark environments used to evaluate the performances of the considered methods.


Sign in / Sign up

Export Citation Format

Share Document