Onion Price Prediction for the Market of Kayamkulam

Author(s):  
Anubha ◽  
Kaustubh Tripathi ◽  
Kshitiz Kumar ◽  
Gopesh Khandelwal
Keyword(s):  
Author(s):  
Sarat Chandra Nayak ◽  
Subhranginee Das ◽  
Mohammad Dilsad Ansari

Background and Objective: Stock closing price prediction is enormously complicated. Artificial Neural Networks (ANN) are excellent approximation algorithms applied to this area. Several nature-inspired evolutionary optimization techniques are proposed and used in the literature to search the optimum parameters of ANN based forecasting models. However, most of them need fine-tuning of several control parameters as well as algorithm specific parameters to achieve optimal performance. Improper tuning of such parameters either leads toward additional computational cost or local optima. Methods: Teaching Learning Based Optimization (TLBO) is a newly proposed algorithm which does not necessitate any parameters specific to it. The intrinsic capability of Functional Link Artificial Neural Network (FLANN) to recognize the multifaceted nonlinear relationship present in the historical stock data made it popular and got wide applications in the stock market prediction. This article presents a hybrid model termed as Teaching Learning Based Optimization of Functional Neural Networks (TLBO-FLN) by combining the advantages of both TLBO and FLANN. Results and Conclusion: The model is evaluated by predicting the short, medium, and long-term closing prices of four emerging stock markets. The performance of the TLBO-FLN model is measured through Mean Absolute Percentage of Error (MAPE), Average Relative Variance (ARV), and coefficient of determination (R2); compared with that of few other state-of-the-art models similarly trained and found superior.


Author(s):  
Vijay Kumar Dwivedi ◽  
Manoj Madhava Gore

Background: Stock price prediction is a challenging task. The social, economic, political, and various other factors cause frequent abrupt changes in the stock price. This article proposes a historical data-based ensemble system to predict the closing stock price with higher accuracy and consistency over the existing stock price prediction systems. Objective: The primary objective of this article is to predict the closing price of a stock for the next trading in more accurate and consistent manner over the existing methods employed for the stock price prediction. Method: The proposed system combines various machine learning-based prediction models employing least absolute shrinkage and selection operator (LASSO) regression regularization technique to enhance the accuracy of stock price prediction system as compared to any one of the base prediction models. Results: The analysis of results for all the eleven stocks (listed under Information Technology sector on the Bombay Stock Exchange, India) reveals that the proposed system performs best (on all defined metrics of the proposed system) for training datasets and test datasets comprising of all the stocks considered in the proposed system. Conclusion: The proposed ensemble model consistently predicts stock price with a high degree of accuracy over the existing methods used for the prediction.


Author(s):  
InSeok Park ◽  
◽  
ZhengXun Jin ◽  
HyunBin Kim ◽  
JongHyeob Kim ◽  
...  

2021 ◽  
Vol 1916 (1) ◽  
pp. 012042
Author(s):  
Ranjani Dhanapal ◽  
A AjanRaj ◽  
S Balavinayagapragathish ◽  
J Balaji

Author(s):  
Marwa Sharaf ◽  
Ezz El-Din Hemdan ◽  
Ayman El-Sayed ◽  
Nirmeen A. El-Bahnasawy

Sign in / Sign up

Export Citation Format

Share Document