Machine Learning-Enabled Human Activity Recognition System for Humanoid Robot

Author(s):  
Swagatam Biswas ◽  
Sheikh Rafiul Islam
Author(s):  
Chaudhari Shraddha

Activity recognition in humans is one of the active challenges that find its application in numerous fields such as, medical health care, military, manufacturing, assistive techniques and gaming. Due to the advancements in technologies the usage of smartphones in human lives has become inevitable. The sensors in the smartphones help us to measure the essential vital parameters. These measured parameters enable us to monitor the activities of humans, which we call as human activity recognition. We have applied machine learning techniques on a publicly available dataset. K-Nearest Neighbors and Random Forest classification algorithms are applied. In this paper, we have designed and implemented an automatic human activity recognition system that independently recognizes the actions of the humans. This system is able to recognize the activities such as Laying, Sitting, Standing, Walking, Walking downstairs and Walking upstairs. The results obtained show that, the KNN and Random Forest Algorithms gives 90.22% and 92.70% respectively of overall accuracy in detecting the activities.


It becomes essential to monitor the Activity of Daily Living(ADL) of elderly people living alone by keeping track of their day to day activities & helping those having strong health issues. In this paper various machine learning algorithms for human activity recognition is analyzed. Along with this, an extensive study is carried out to learn about the current technologies used in activity recognition. Activity recognition is generally done in the form of signals generated through sensors. The signals are then preprocessed, segmented, features are extracted and activity is recognized. The main objective of Human Activity Recognition System is to explore the limitations of self-dependent old age persons and suggest ways of overcoming it. By using the different wearable and non-wearable sensors, one can easily monitor the human activity and evaluate the data generated through it.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 692
Author(s):  
Jingcheng Chen ◽  
Yining Sun ◽  
Shaoming Sun

Human activity recognition (HAR) is essential in many health-related fields. A variety of technologies based on different sensors have been developed for HAR. Among them, fusion from heterogeneous wearable sensors has been developed as it is portable, non-interventional and accurate for HAR. To be applied in real-time use with limited resources, the activity recognition system must be compact and reliable. This requirement can be achieved by feature selection (FS). By eliminating irrelevant and redundant features, the system burden is reduced with good classification performance (CP). This manuscript proposes a two-stage genetic algorithm-based feature selection algorithm with a fixed activation number (GFSFAN), which is implemented on the datasets with a variety of time, frequency and time-frequency domain features extracted from the collected raw time series of nine activities of daily living (ADL). Six classifiers are used to evaluate the effects of selected feature subsets from different FS algorithms on HAR performance. The results indicate that GFSFAN can achieve good CP with a small size. A sensor-to-segment coordinate calibration algorithm and lower-limb joint angle estimation algorithm are introduced. Experiments on the effect of the calibration and the introduction of joint angle on HAR shows that both of them can improve the CP.


Author(s):  
Muhammad Muaaz ◽  
Ali Chelli ◽  
Martin Wulf Gerdes ◽  
Matthias Pätzold

AbstractA human activity recognition (HAR) system acts as the backbone of many human-centric applications, such as active assisted living and in-home monitoring for elderly and physically impaired people. Although existing Wi-Fi-based human activity recognition methods report good results, their performance is affected by the changes in the ambient environment. In this work, we present Wi-Sense—a human activity recognition system that uses a convolutional neural network (CNN) to recognize human activities based on the environment-independent fingerprints extracted from the Wi-Fi channel state information (CSI). First, Wi-Sense captures the CSI by using a standard Wi-Fi network interface card. Wi-Sense applies the CSI ratio method to reduce the noise and the impact of the phase offset. In addition, it applies the principal component analysis to remove redundant information. This step not only reduces the data dimension but also removes the environmental impact. Thereafter, we compute the processed data spectrogram which reveals environment-independent time-variant micro-Doppler fingerprints of the performed activity. We use these spectrogram images to train a CNN. We evaluate our approach by using a human activity data set collected from nine volunteers in an indoor environment. Our results show that Wi-Sense can recognize these activities with an overall accuracy of 97.78%. To stress on the applicability of the proposed Wi-Sense system, we provide an overview of the standards involved in the health information systems and systematically describe how Wi-Sense HAR system can be integrated into the eHealth infrastructure.


Sign in / Sign up

Export Citation Format

Share Document