Predictive Models for Stock Market Index Using Stochastic Time Series ARIMA Modeling in Emerging Economy

Author(s):  
Manish Dadhich ◽  
Manvinder Singh Pahwa ◽  
Vipin Jain ◽  
Ruchi Doshi
2018 ◽  
Vol III (IV) ◽  
pp. 413-426
Author(s):  
Mustafa Afeef ◽  
Nazim Ali ◽  
Adnan Khan

Movements in a stock market index may safely be considered one of the mostwatched out phenomena by investors in almost every economy. One method to forecast the index is to study all those external factors that directly affect it. Another way, however, is to base ones predictions on the past behavior of the variable of interest. This paper has employed the method described latter and has, therefore, made use of the ARIMA modeling. In this connection, the daily stock market index data of the Karachi Stock Exchange 100 index was taken for twenty years from 1997 to 2017 which translated into 4940 observations. The study revealed that the model was decently efficient in forecasting the KSE 100 Index, though only for the short-range. The upshot of this study may be utilized specifically by short term investors in deciding on when, and when not, to invest in the stock market.


2021 ◽  
Vol 5 (3) ◽  
pp. 456-465
Author(s):  
Harya Widiputra ◽  
Adele Mailangkay ◽  
Elliana Gautama

The Indonesian Stock Exchange (IDX) stock market index is one of the main indicators commonly used as a reference for national economic conditions. The value of the stock market index is often being used by investment companies and individual investors to help making investment decisions. Therefore, the ability to predict the stock market index value is a critical need. In the fields of statistics and probability theory as well as machine learning, various methods have been developed to predict the value of the stock market index with a good accuracy. However, previous research results have found that no one method is superior to other methods. This study proposes an ensemble model based on deep learning architecture, namely Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM), called the CNN-LSTM. To be able to predict financial time series data, CNN-LSTM takes feature from CNN for extraction of important features from time series data, which are then integrated with LSTM feature that is reliable in processing time series data. Results of experiments on the proposed CNN-LSTM model confirm that the hybrid model effectively provides better predictive accuracy than the stand-alone time series data forecasting models, such as CNN and LSTM.  


2011 ◽  
Vol 58 (2) ◽  
pp. 396-399 ◽  
Author(s):  
Doo Hwan Kim ◽  
Seong Eun Maeng ◽  
Yu Sik Bang ◽  
Hyung Wooc Choi ◽  
Moon-Yong Cha ◽  
...  

2018 ◽  
Vol III (IV) ◽  
pp. 413-426
Author(s):  
Mustafa Afeef ◽  
Nazim Ali ◽  
Adnan Khan

Movements in a stock market index may safely be considered one of the mostwatched out phenomena by investors in almost every economy. One method to forecast the index is to study all those external factors that directly affect it. Another way, however, is to base ones predictions on the past behavior of the variable of interest. This paper has employed the method described latter and has, therefore, made use of the ARIMA modeling. In this connection, the daily stock market index data of the Karachi Stock Exchange 100 index was taken for twenty years from 1997 to 2017 which translated into 4940 observations. The study revealed that the model was decently efficient in forecasting the KSE 100 Index, though only for the short-range. The upshot of this study may be utilized specifically by short term investors in deciding on when, and when not, to invest in the stock market.


2018 ◽  
Vol 13 (2) ◽  
pp. 268-279
Author(s):  
Li Tang ◽  
Ping He Pan ◽  
Yong Yi Yao

This paper proposes a new computational intelligence model for predicting univariate time series, called EPAK, and a complex prediction model for stock market index synthesizing all the sector index predictions using EPAK as a kernel. The EPAK model uses a complex nonlinear feature extraction procedure integrating a forward rolling Empirical Mode Decomposition (EMD) for financial time series signal analysis and Principal Component Analysis (PCA) for dimension reduction to generate information-rich features as input to a new two-layer K-Nearest Neighbor (KNN) with Affinity Propagation (AP) clustering for prediction via regression. The EPAK model is then used as a kernel for predicting each of all the sector indices of the stock market. The sector indices predictions are then synthesized via weighted average to generate the prediction of the stock market index, yielding a complex prediction model for the stock market index. The EPAK model and the complex prediction model for stock index are tested on real historical financial time series in Chinese stock index including CSI 300 and ten sector indices, with results confirming the effectiveness of the proposed models.


Sign in / Sign up

Export Citation Format

Share Document