Automatic Traffic Light Detection for Self-Driving Cars Using Transfer Learning

Author(s):  
S. Gautam ◽  
A. Kumar
2020 ◽  
Vol 9 (1) ◽  
pp. 2698-2704

Advanced Driving Assistance System (ADAS) has seen tremendous growth over the past 10 years. In recent times, luxury cars, as well as some newly emerging cars, come with ADAS application. From 2014, Because of the entry of the European new car assessment programme (EuroNCAP) [1] in the AEBS test, it helped gain momentum the introduction of ADAS in Europe [1]. Most OEMs and research institutes have already demonstrated on the self-driving cars [1]. So here, a focus is made on road segmentation where LiDAR sensor takes in the image of the surrounding and where the vehicle should know its path, it is fulfilled by processing a convolutional neural network called semantic segmentation on an FPGA board in 16.9ms [3]. Further, a traffic light detection model is also developed by using NVidia Jetson and 2 FPGA boards, collectively named as 'Driving brain' which acts as a super computer for such networks. The results are obtained at higher accuracy by processing the obtained traffic light images into the CNN classifier [5]. Overall, this paper gives a brief idea of the technical trend of autonomous driving which throws light on algorithms and for advanced driver-assistance systems used for road segmentation and traffic light detection


2017 ◽  
Vol 5 (3) ◽  
pp. 20
Author(s):  
JEBISHA J ◽  
MONISHA V ◽  
JEMI B. FEMILA ◽  
◽  
◽  
...  

2021 ◽  
Author(s):  
Shujia Yan ◽  
Xinbo Liu ◽  
Wu Qian ◽  
Qiang Chen

Information ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 278 ◽  
Author(s):  
Thiago Almeida ◽  
Hendrik Macedo ◽  
Leonardo Matos ◽  
Nathanael Vasconcelos

Traffic light detection and recognition (TLR) research has grown every year. In addition, Machine Learning (ML) has been largely used not only in traffic light research but in every field where it is useful and possible to generalize data and automatize human behavior. ML algorithms require a large amount of data to work properly and, thus, a lot of computational power is required to analyze the data. We argue that expert knowledge should be used to decrease the burden of collecting a huge amount of data for ML tasks. In this paper, we show how such kind of knowledge was used to reduce the amount of data and improve the accuracy rate for traffic light detection and recognition. Results show an improvement in the accuracy rate around 15%. The paper also proposes a TLR device prototype using both camera and processing unit of a smartphone which can be used as a driver assistance. To validate such layout prototype, a dataset was built and used to test an ML model based on adaptive background suppression filter (AdaBSF) and Support Vector Machines (SVMs). Results show 100% precision rate and recall of 65%.


Author(s):  
S. Hosseinyalmdary ◽  
A. Yilmaz

Traffic lights detection and their state recognition is a crucial task that autonomous vehicles must reliably fulfill. Despite scientific endeavors, it still is an open problem due to the variations of traffic lights and their perception in image form. Unlike previous studies, this paper investigates the use of inaccurate and publicly available GIS databases such as OpenStreetMap. In addition, we are the first to exploit conic section geometry to improve the shape cue of the traffic lights in images. Conic section also enables us to estimate the pose of the traffic lights with respect to the camera. Our approach can detect multiple traffic lights in the scene, it also is able to detect the traffic lights in the absence of prior knowledge, and detect the traffics lights as far as 70 meters. The proposed approach has been evaluated for different scenarios and the results show that the use of stereo cameras significantly improves the accuracy of the traffic lights detection and pose estimation.


Sign in / Sign up

Export Citation Format

Share Document