Numerical Study on the Performance of Savonius Vertical Axis Wind Turbine with Guide Vanes

Author(s):  
J. Ramarajan ◽  
S. Jayavel
2021 ◽  
Vol 327 ◽  
pp. 04005
Author(s):  
Valentin Obretenov ◽  
Rossen Iliev

The paper presents the results of an experimental study of a vertical wind turbine type Darrieus with frontal cylindrical guide vane unit. The main goal of the research is to analyze the influence of the geometry of a classical cylindrical guide vane unit on the active and passive zone of the wind turbine. The aerodynamic scheme is synthesized by a classic runner and frontal cylindrical guide vanes. Three different guiding devices of a model vertical wind turbine with frontally located guide vanes have been studied. Their influence on the characteristics of the turbine has been examined. The reasons of the differences in the characteristics of the three studied variants of the guiding devices are clarified by numerical study of the flow through the blade cascades of the guide vanes and the runner. The results of the study shows what is the reason for the positive effect of the cylindrical vane guide device on the wind turbine’s runner.


2021 ◽  
pp. 0309524X2110039
Author(s):  
Amgad Dessoky ◽  
Thorsten Lutz ◽  
Ewald Krämer

The present paper investigates the aerodynamic and aeroacoustic characteristics of the H-rotor Darrieus vertical axis wind turbine (VAWT) combined with very promising energy conversion and steering technology; a fixed guide-vanes. The main scope of the current work is to enhance the aerodynamic performance and assess the noise production accomplished with such enhancement. The studies are carried out in two phases; the first phase is a parametric 2D CFD simulation employing the unsteady Reynolds-averaged Navier-Stokes (URANS) approach to optimize the design parameters of the guide-vanes. The second phase is a 3D CFD simulation of the full turbine using a higher-order numerical scheme and a hybrid RANS/LES (DDES) method. The guide-vanes show a superior power augmentation, about 42% increase in the power coefficient at λ = 2.75, with a slightly noisy operation and completely change the signal directivity. A remarkable difference in power coefficient is observed between 2D and 3D models at the high-speed ratios stems from the 3D effect. As a result, a 3D simulation of the capped Darrieus turbine is carried out, and then a noise assessment of such configuration is assessed. The results show a 20% increase in power coefficient by using the cap, without significant change in the noise signal.


2012 ◽  
Vol 499 ◽  
pp. 259-264
Author(s):  
Qi Yao ◽  
Ying Xue Yao ◽  
Liang Zhou ◽  
S.Y. Zheng

This paper presents a simulation study of an H-type vertical axis wind turbine. Two dimensional CFD model using sliding mesh technique was generated to help understand aerodynamics performance of this wind turbine. The effect of the pith angle on H-type vertical axis wind turbine was studied based on the computational model. As a result, this wind turbine could get the maximum power coefficient when pitch angle adjusted to a suited angle, furthermore, the effects of pitch angle and azimuth angle on single blade were investigated. The results will provide theoretical supports on study of variable pitch of wind turbine.


Energy ◽  
2021 ◽  
pp. 122133
Author(s):  
Wen Xu ◽  
Ying Wang ◽  
Shen-xian Huang ◽  
Cheng-cheng Li

Energy ◽  
2016 ◽  
Vol 104 ◽  
pp. 295-307 ◽  
Author(s):  
Qing'an Li ◽  
Takao Maeda ◽  
Yasunari Kamada ◽  
Junsuke Murata ◽  
Toshiaki Kawabata ◽  
...  

2018 ◽  
Vol 42 (4) ◽  
pp. 404-415
Author(s):  
H. Abu-Thuraia ◽  
C. Aygun ◽  
M. Paraschivoiu ◽  
M.A. Allard

Advances in wind power and tidal power have matured considerably to offer clean and sustainable energy alternatives. Nevertheless, distributed small-scale energy production from wind in urban areas has been disappointing because of very low efficiencies of the turbines. A novel wind turbine design — a seven-bladed Savonius vertical-axis wind turbine (VAWT) that is horizontally oriented inside a diffuser shroud and mounted on top of a building — has been shown to overcome the drawback of low efficiency. The objective this study was to analyze the performance of this novel wind turbine design for different wind directions and for different guide vanes placed at the entrance of the diffuser shroud. The flow field over the turbine and guide vanes was analyzed using computational fluid dynamics (CFD) on a 3D grid for multiple tip-speed ratios (TSRs). Four wind directions and three guide-vane angles were analyzed. The wind-direction analysis indicates that the power coefficient decreases to about half when the wind is oriented at 45° to the main axis of the turbine. The analysis of the guide vanes indicates a maximum power coefficient of 0.33 at a vane angle of 55°.


2020 ◽  
Vol 1618 ◽  
pp. 052012
Author(s):  
M Guilbot ◽  
S Barre ◽  
G Balarac ◽  
C Bonamy ◽  
N Guillaud

Author(s):  
N. Cristobal Uzarraga-Rodriguez ◽  
A. Gallegos-Mun˜oz ◽  
J. Manuel Riesco A´vila

A numerical analysis of a rooftop vertical axis wind turbine (VAWT) for applications in urban area is presented. The numerical simulations were developed to study the flow field through the turbine rotor to analyze the aerodynamic performance characteristics of the device. Three different blade numbers of wind turbine are studied, 2, 3 and 4, respectively. Each one of the models was built in a 3D computational model. The effects generated in the performance of turbines by the numbers of blades are considered. A Sliding Mesh Model (SMM) capability was used to present the dimensionless form of coefficient power and coefficient moment of the wind turbine as a function of the wind velocity and the rotor rotational speed. The numerical study was developed in CFD using FLUENT®. The results show the aerodynamic performance for each configuration of wind turbine rotor. In the cases of Rooftop rotor the power coefficient increases as the blade number increases, while in the case of Savonius rotor the power coefficient decrease as the blades number increases.


Sign in / Sign up

Export Citation Format

Share Document